Lecture 9

Selection Problem

Exponential Mechanism.

Watch out HW2. Released today or torgorrow.

Previously on

Differential Privacy

Algorithms Problem -> Randomized Response - Laplace Mechanism , generalization Today -> Exponential Mechanism

-> Release Numeric Statistics (avg, histogram,...) -> Selection Properties Problem. Group Privacy. (Agnostic to ALGs,

Selection Problem
Heavy Hitter
Example. A set of websites
$$[1, ..., d]$$

Each user submits $X_{i} \subseteq [1, ..., d] \subseteq f$ websites
Winner: website with the highest score : $V_{ij} \in \mathbb{E} \ldots dJ$
 $g(j; x) = [\tilde{z}_{i}] \tilde{g} \in X_{i} \tilde{J}]$
Whattim
The set of users
who visited website \tilde{j}
in the data set x .
Want to find website \tilde{j} such that
Error = max $g(\tilde{j}^{*}; x) - g(\tilde{g}; x)$
is small.
One Proposal:
 $= Run Laplace Mechanism$
to release $g(\tilde{j}; x)$ for all $\tilde{j} \in \tilde{z} \ldots d\tilde{j}$
 $= then output \tilde{j}$ with the maximum
Roisy score.
 g
 $= Mating Lyder more callegy!$

Example 2: Pricing a digital good.
• Selling an app; what price?
• n people 's valuations: "How much are they willing
to pay?"
Revenue:
$$g(P; x) = P \cdot \# \{i = K_i \ge p\}$$
.
Error: max $g(P; x) = P \cdot \# \{i = K_i \ge p\}$.
Error: max $g(P; x) = g(A(x), x)$
• Detimal Revenue.
4 people: $X_i = 1$
 $X_i = 4, 01 \leftarrow optimal price.$

Formulation = Selection Problem Y: possible outcomes (e.g. websites, prices). $g: Y \times X^{n} \longrightarrow R$ "score" function (e.g., #hits, revenue) measures how good y is on dataset x. g is Δ -sensitive if $\forall y \in Y$ $g(y; \cdot)$ has $GS_{g} \leq \Delta$. Exponential Mechanism. $A_{EM}(x, g, \varepsilon, \Delta)$ Output an outcome y with probability proportional to $exp(\frac{\varepsilon}{2\Lambda} g(y; x))$.

For this class, assume ontrone space Y is finite. $P[A_{EM}(x, q, z, \delta) = Y] = \frac{1}{C_x} \cdot exp(\frac{z}{z\delta} q(y; x))$ "Normalization factor" $C_x = \sum_{y' \in Y} exp(\frac{z}{z\delta} q(y'; x)).$

Privacy Proof.
Theorem. For every
$$\triangle$$
-sensitive \mathcal{G} ,
 $A_{EM}(\cdot, \mathcal{G}, \varepsilon, A)$ is ε -DP.
Proof. Fix any neighbors $\mathscr{C} \land \mathscr{C}'$, any outcome $g(\varepsilon)$.
Gal: to show plug
 $\mathbb{P}[A(\varepsilon)=g] \stackrel{!}{=} i\alpha$
 $\varepsilon \in SP[A(\varepsilon)=g]$
 $\mathbb{P}[A(\varepsilon)=g] = \frac{i}{c_{\varepsilon}} \cdot exp(\frac{\varepsilon}{2\alpha} \Re(g; \varepsilon))$
 $\varepsilon \in SP[A(\varepsilon)=g]$
 $\mathbb{P}[A(\varepsilon)=g] = \frac{C_{\varepsilon'}}{C_{\varepsilon}} \cdot \frac{exp(\frac{\varepsilon}{2\alpha} \Re(g; \varepsilon))}{(\frac{\varepsilon}{2\alpha} - \frac{\varepsilon}{2\alpha} \Re(g; \varepsilon))} \le exp(\varepsilon)$
 $\mathbb{P}[\log in = \frac{C_{\varepsilon'}}{C_{\varepsilon}} \cdot \frac{exp(\frac{\varepsilon}{2\alpha} \Re(g; \varepsilon))}{(\frac{\varepsilon}{2\alpha} - \frac{\varepsilon}{2\alpha} \Re(g; \varepsilon))} \le exp(\varepsilon)$
 $\mathbb{P}(\frac{\varepsilon}{2\alpha} - \frac{\Re(g; \varepsilon)}{(\frac{\varepsilon}{2\alpha} - \frac{\varepsilon}{2\alpha} \Re(g; \varepsilon))}) \le exp(\varepsilon)$
 $\mathbb{P}(\frac{\varepsilon}{2\alpha} - \frac{\Re(g; \varepsilon)}{(\frac{\varepsilon}{2\alpha} - \frac{\varepsilon}{2\alpha} \Re(g; \varepsilon))}) \le exp(\frac{\varepsilon}{2})$
 $\mathbb{P}[\log in = \frac{C_{\varepsilon}}{C_{\varepsilon}} \cdot exp(\frac{\varepsilon}{2\alpha} - \frac{\Re(g; \varepsilon)}{(\frac{\varepsilon}{2\alpha} - \frac{\varepsilon}{2\alpha} \Re(g; \varepsilon))}) \le exp(\frac{\varepsilon}{2})$
 $\mathbb{P}(\frac{\varepsilon}{2\alpha} - \frac{\Re(g; \varepsilon)}{(\frac{\varepsilon}{2\alpha} - \frac{\varepsilon}{2} \Re(g; \varepsilon))}) = exp(\frac{\varepsilon}{2})$
 $\mathbb{P}(\frac{\varepsilon}{2\alpha} - \frac{\Re(g; \varepsilon)}{(\frac{\varepsilon}{2\alpha} - \frac{\varepsilon}{2} \Re(g; \varepsilon))}) = exp(\frac{\varepsilon}{2\alpha} \Re(g; \varepsilon))$
 $= exp(\frac{\varepsilon}{2}) \cdot exp(\frac{\varepsilon}{2\alpha} - \frac{\varepsilon}{2} \Re(g; \varepsilon))$
 $= exp(\frac{\varepsilon}{2}) \cdot C_{\varepsilon}$
 $= \exp(\frac{\varepsilon}{2}) \cdot exp(\frac{\varepsilon}{2\alpha} \Re(g; \varepsilon))$
 $= exp(\frac{\varepsilon}{2}) \cdot C_{\varepsilon}$
 $\exp(\frac{\varepsilon}{2}) \Re(g; \varepsilon)) = exp(\frac{\varepsilon}{2})$

Exp. Mechanism is everywhere.
Laplace Mechanism.
$$Y \in IR$$

 $f: X^{n} \mapsto IR$, $g(y; x) = -|y - f(x)|$
error

Randomized Response
$$Y = [0,1]^n$$

 $\mathcal{F}(Y; x) = ||Y - x||_1$
private bits

$$RR$$
 samples y with prob proportional to
 $exp\left(\frac{-z}{2} \|y - x\|_{2}\right)$.

How useful is EM?

Theorem. (
$$Y$$
 is finite) Let $Y = [d]$
Then. $\underset{Y \sim A_{EM}}{\mathbb{H}} \left[\underset{max}{\mathcal{B}max}(x) - \underset{\varphi}{\mathcal{G}}(Y;x) \right] \leq \frac{2\Delta}{\mathcal{E}} \left(ln(d) + 1 \right)$
"Tail Bound"
 $\forall t > 0$, $\underset{Y \sim A_{EM}}{\mathbb{P}} \left[\underset{max}{\mathcal{B}max}(x) - \underset{\varphi}{\mathcal{G}}(Y;x) \geq \frac{2\Delta}{\mathcal{E}} \left(ln(d) + t \right) \right] < e^{-t}$
 $\underset{Y \sim A_{EM}}{\mathbb{P}roof.}$