Lecture 4 - How to define "Privacy"? → Differential Privacy - Revisit Randomized Response - Laplace Mechanism (optimal).

Announcement: O Canvas. 2 HWO solution posted online. (3) HW1 Coming. (4) Waitfist

How to define "privacy"?

Approaches : () "Arm Race": Think of possible attacks; Defense against these attacks. Example: K-anonymity (against Linkage attack; Think netfix attack w/ IMDB data)

(2) Formulate General Criteria.

$$\begin{array}{rcl} & K - anonymity. \\ \hline & Input Table & & Output Table \\ \hline & Output Table & & Output Table \\ \hline & Generalization'': \\ & Replace a single value with a set of possible values \\ \hline & 28 & & <30. \\ \hline & male & & \\ \hline & female, male & \\ \hline & 1 & 130^{**} \\ 2 & 130^{**} \\ \hline & 3 & 130^{**} \\ \hline & 1 & 130^{**} \\ \hline & 2 & 130^{**} \\ \hline & 1 & 130^{**} \\ \hline & 2 & 130^{**} \\ \hline & 1 & 130^{**} \\ \hline & 2 & 130^{**} \\ \hline & 1 & 130^{**} \\ \hline & 2 & 130^{**} \\ \hline & 1 & 130^{**} \\ \hline & 3 & 130^{**} \\ \hline & 5 & 130^{**} \\ \hline & 6 & 130^{**} \\ \hline & 5 & 130^{**} \\ \hline & 6 & 130^{**} \\ \hline & 6 & 130^{**} \\ \hline & 7 & 130^{**} \\ \hline & 3 & 130^{**} \\ \hline & 1 & 130^{**} \\ \hline \end{array}$$

the non-sensitive attributes

	No	Sensitive			
	Zip code	Age	Nationality	Condition	
1	130**	<30	*	AIDS	
2	130**	<30	*	Heart Disease	
3	130**	<30	*	Viral Infection	
4	130**	<30	*	Viral Infection	
5	130**	<u>≥</u> 40	*	Cancer	
6	130**	\geq 40	*	Heart Disease	
7	130**	≥ 40	*	Viral Infection	
8	130**	≥40	*	Viral Infection	
9	130**	3*	*	Cancer	
10	130**	3*	*	Cancer	
11	130**	3*	*	Cancer	
12	130**	3*	*	Cancer	

Figure 1: A 4-anonymous table.

- Seems to resist "Linkage attacks"
 → Can't identify a record uniquely
 → Seem hard to link other sources of info_
- What Can go wrong?
 → Everyone in their 30's has cancer
 → Rule out other info.

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2	130**	<30	*	Heart Disease
3	130**	<30	*	Viral Infection
4	130**	<30	*	Viral Infection
5	130**	≥40	*	Cancer
6	130**	≥40	*	Heart Disease
7	130**	≥40	*	Viral Infection
8	130**	≥40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Figure 1: A 4-anonymous table.

Composition.

Cross referencing :

28 years old Zipcode 13012 In both data sets

Overlap clatasets

		Non-Sensitive			Sensitive
		Zip code	Age	Nationality	Condition
ſ	1	130**	<30	*	AIDS
	2	130**	<30	*	Heart Disease
	3	130**	<30	*	Viral Infection
	4	130**	<30	*	Viral Infection
Ì	5	130**	≥40	*	Cancer
	6	130**	≥40	*	Heart Disease
	7	130**	\geq 40	*	Viral Infection
	8	130**	≥40	*	Viral Infection
Í	9	130**	3*	*	Cancer
	10	130**	3*	*	Cancer
	11	130**	3*	*	Cancer
	12	130**	3*	*	Cancer

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<35	*	AIDS
2	130**	<35	*	Tuberculosis
3	130**	<35	*	Flu
4	130**	<35	*	Tuberculosis
5	130**	<35	*	Cancer
6	130**	<35	*	Cancer
7	130**	\geq 35	*	Cancer
8	130**	\geq 35	*	Cancer
9	130**	\geq 35	*	Cancer
10	130**	\geq 35	*	Tuberculosis
11	130**	\geq 35	*	Viral Infection
12	130**	\geq 35	*	Viral Infection

K-anonymity issues
 Specifies a set of acceptable output (k-anonymous tables)
 Does not Specify the "algorithmic" process
 "Flexibility" may leak info.

	Non-Sensitive			Sensitive
	Zip code	Age	Nationality	Condition
1	130**	<30	*	AIDS
2	130**	<30	*	Heart Disease
3	130**	<30	*	Viral Infection
4	130**	<30	*	Viral Infection
5	130**	<u>≥</u> 40	*	Cancer
6	130**	≥40	*	Heart Disease
7	130**	≥40	*	Viral Infection
8	130**	≥40	*	Viral Infection
9	130**	3*	*	Cancer
10	130**	3*	*	Cancer
11	130**	3*	*	Cancer
12	130**	3*	*	Cancer

Figure 1: A 4-anonymous table.

Differential Privacy (Dwork, McSherry, Nissim, Smith) 2006 Algorithmic Property. — Rigorous guarantees against arbitrary external info. — Resists known attacks Data domain χ (e.g. $[0,1]^d$, \mathbb{R}^d). Data set $\chi = (\chi_1, \chi_2, \dots, \chi_n) \in \chi^n$

Randomized Algorithm
$$A$$

 $\Rightarrow A(x)$ is a random variable.
 $x \xrightarrow{x_{1}} A \rightarrow A(x)$
 $x_{n} \xrightarrow{x_{n}} Data Set uhat property?$

Definition. (Differential Privacy).
A is
$$\mathcal{E}$$
-differentially private if
for all neighbors \mathcal{X} and $\mathcal{X}' \in ----$ (hypothetical)
for all subsets E of outputs
 $\mathbb{P}[A(\mathbf{x}) \in E] \leq C^{\mathcal{E}} \mathbb{P}[A(\mathbf{x}') \in E]$
 $\underbrace{f(\mathbf{x}) \in E] \leq C^{\mathcal{E}} \mathbb{P}[A(\mathbf{x}') \in E]$
 $\underbrace{f(\mathbf{x}) \circ ntputs}_{\mathcal{E} = \mathcal{E}}$
 $\mathcal{A}(\mathbf{x}')$
 $\mathcal{A}(\mathbf{x}')$

Definition. (Differential Privacy).
A is
$$\mathcal{E}$$
-differentially private if
for all neighbors \mathcal{X} and \mathcal{X}'
for all subsets E of outputs
 $\mathbb{P}[A(x) \in E] \leq \mathbb{C}^{\mathcal{E}} \mathbb{P}[A(x') \in E]$

What is
$$\mathcal{E}$$
?
• Measure of info leakage (called max divergence)
(also called privacy parameter)
 $\mathcal{E}=0$, $\mathcal{C}^{\mathcal{E}}=1$. (-> $\mathcal{A}(x)$ is the same for all x .
• Small constant: $\frac{1}{10}$, 1 - but not $\frac{1}{2^{80}}$, 100
 $\mathcal{C}^{\mathcal{E}} \approx 1 + \mathcal{E}$

$$RR \quad is \quad (n(3) - diffentially \quad private$$

$$Proof. \quad Fix \quad two \quad neighboring \quad data \quad sets$$

$$\mathcal{X} = (\chi_1, \dots, \chi_i, \dots, \chi_n) \quad , \quad \chi' = (\chi_1, \dots, \chi_i', \dots, \chi_n)$$

$$= \frac{P[RR_{i}(x_{i}) = y_{i}]}{P[RR_{i}(x_{i}) = y_{i}]} \qquad How \ big \ is \ flus!$$

$$= \frac{P[RR_{i}(x_{i}) = y_{i}]}{E \ Complete \ the \ proof: \ Y \in S \ To_{i} = 3.$$

$$To \ Complete \ the \ proof: \ Y \in S \ To_{i} = 3.$$

$$P[RR(x) \in E] = \sum_{y \in E} P[RR(x) = y] \leq \sum_{y \in E} e^{E} \cdot P[RR(x) = y]$$

$$= e^{E} \sum_{y \in E} P[RR(x) = y] = e^{E} P[RR(x) \in E].$$

Basic Proof Strategy :

for all neighbors \mathcal{X} and \mathcal{X}' for all subsets E of outputs $\mathbb{P}[A(x) \in E] \leq \mathbb{P}[A(x') \in E]$

 $\mathbb{P}[A(x)=y] \leq e^{\varepsilon}\mathbb{P}[A(x')=y]$

Reading for Weds.

HW1.