Lecture 3. Reconstruction Attacks (Part 2)

- Recap on linear reconstruction attacks.
- Reconstruction Attacks w/ less queries
- More efficient attacks
- Reconstruction Attack in practice. (Reading)
- -> Announcement.

Linear Reconstruction Attack

· Introduced by Dinura Nissim in 2003

Name	Postal Code	Age	Sex	Has Disease?
Alice	02445	36	F	1
Bob	02446	18	M	0
Charlie	02118	66	M	1
:	:	:	:	:
Zora	02120	40	F	1

IdentifiersSecret z_1 s_1 z_2 s_2 z_3 s_3 \vdots \vdots z_n s_n

Z identifiers Secret bit

Release count statistics: ## people satisfy some property

• How many people are older than 40 & have secret bit =1?

P(Z;)

inher/dot

product

$$f(X) = \sum_{j=1}^{2} P(Z_j) S_j$$
 for some $Y: Z \mapsto \{0,1\}$

Boolean function

 $f(X) = (Y(Z_1), Y(Z_2), ..., Y(Z_n)) \cdot (S_1, ..., S_n)$

bit vector $\in \{0,1\}^n$ Secret bits

Examples:

$$\mathcal{C}_{\mathbf{z}}(\mathbf{z}_j) = \mathbf{I}$$
 : \mathbf{z}_j is older than 40

$$\mathscr{C}_{2}(Z_{j})=1$$
 : Z_{j} is older than 40 and male

$$\mathcal{C}_{1}(Z_{j})=1$$
 : Z_{j} is older than 40
 $\mathcal{C}_{2}(Z_{j})=1$: Z_{j} is older than 40 and male
 $\mathcal{C}_{3}(Z_{j})=1$: Z_{j} is older than 20 and male

First Reconstruction Attack

"You can't release all count statistics with non-trivial accuracy."

Rueries: $k=2^n$ For every $v \in \{0,1\}^n$, $F_v = v$ Reconstruction:

Suppose the answers (a_v) $v \in \{0,1\}^n$, $\forall v \in \{0,1\}^n$, $|F_v \cdot s - a_v| \leq a_n$ Choose $\tilde{s} \in \{0,1\}^n$, $\forall v$, $|F_v \cdot \tilde{s} - a_v| \leq a_n$ Released answer.

Theorem. $\| s - \tilde{s} \|_1 \leq 4\alpha n$

Theorem. If all 2^n counts are within 2^n error, then 5,3 clisagree on 42^n bits. 2^n

Not practical: Zⁿ.

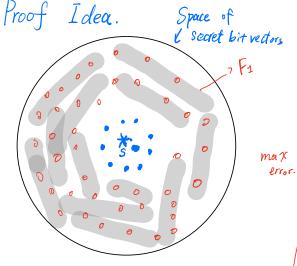
```
Reconstruction Using Fewer Queries _ random bits
# Released Statistics << 2<sup>n</sup>

20n \[
\begin{cases}
\text{1 \cdot 1 \cdot 0 \cdot 0 \cdot 1 \cdot 0 \cdot 0 \cdot 1 \cdot 0 \c
                     Attack: Choose K=20n random \ell_i: Z \mapsto \{0,1\}, \forall i \in [K].
                                                                            \Rightarrow k random vectors/queries F_i \in \{0,1\}^n
                          Suppose that answers: \forall i \in [k], |F_i \cdot s - a_i| \leq 2n
                        Find \widetilde{S} \in [0,1]^n such that: \forall i \in [k], |F_i \cdot \widetilde{S} - a_i| \leq \alpha n
                                                                   Theorem. ||S-3||_1 \leq 256 \ \alpha^2 n^2.
                                                                                                                                                                                                                                                                                                        previously
                                                                                                             with high probability (>99%)
of the tine
        (az s-s) ||a||_1 = \frac{s}{s-1} |a_s| ell one norm.
                                                                               ||a||_2 = \sqrt{\frac{2}{5}} a_i^2 ell two norm
```

Theorem. If we ask O(n) random queries $F \in \{0,1\}^n$ and all conswers have error $\leq 2n$, then reconstruct \tilde{S} such that $\|S - \tilde{S}\|_1 \leq O(\alpha^2 n^2)$ us. On $c \cdot \lambda^2 n^2$ How to parse this? • Improvement $O(n) \ll 2^n$ • $dn \ll \sqrt{n}$, then $d^2n^2 \ll n$. $\|s-\tilde{s}\| \ll n$. For example, $\lambda = 10\%$, $\lambda = 10\%$ Why is this an interesting case? Population draw data | Pata | Set |

How | Close | Pata | Set |

Hell $\varphi(z)$. $s = p = \frac{1}{2} \varphi(z_j) \cdot s_j$ Sampling error in $\sum_{j \in J} \mathcal{L}(Z_j) \cdot S_j$ is roughly Jn.



- good \widetilde{s} : $||s-\widetilde{s}||_{2} \leq \widetilde{\lambda} n^{2}$ • bad \widetilde{s} : $||s-\widetilde{s}||_{2} > \widetilde{\lambda} n^{2}$
- given by a random query $F_{\bar{\imath}}$.

Reconstruction Method

Given queries F_1, \ldots, F_k = random

answers a_1, \ldots, a_k Final $\widetilde{S} \in \{0,1\}^n$ that minimized

> max $i \in \{0,1\}^n$ that [minimized]Output \widetilde{S} . answer

evaluated

on \widetilde{S} arswer.

Recoll: $\max_{i} |F_{i} \cdot s - \alpha_{i}| \leq 2n$ I find S such that $\forall i \in \{1,...,k\}$, $|F_{i} \cdot S - \alpha_{i}| \leq 2n$.

Feasible because S^{*} satisfies all of them

Proof Idea.

- ① \hat{S} satisfies $\max_{\hat{i}} |F_i \cdot \hat{S} \alpha_i| \leq 2n$
- ② \widetilde{S} is eliminated if $\exists F_i \quad s.t. \quad |F_i \cdot \widetilde{S} a_i| > a_n$ (\widetilde{S} is eliminated by F_i)

Reconstruction Method

Given queries $F_1, ..., F_k$,

answers $a_1, ..., a_k$ Find $\widetilde{S} \in \{0,1\}^n$ that minimizes $\max_{i \in \{1,...,k\}} |F_i \cdot \widetilde{S} - a_i|$ Output \widetilde{S} .

(3) For every bad 3,
Some random query eliminates 3 with high probability.

Proof.

P(\exists some bad \widetilde{s} not eliminated) \[
\leq \leq \left| \frac{\mathbb{P[\vec{S} not eliminated)}}{\right|}
\]

P[3 not eliminated] = P[+ i, & is not eliminated]

= $P[3 \text{ not eliminated by } F_i]^k$ $\leq P[|F_{i}\cdot 3 - F_{i}\cdot 5| \leq 42n]^{k} \qquad \leq 2^{-2n}$ $\leq \frac{9}{6} \qquad \text{key Step to be Shown}$

Reconstruction Method Given queries F1,..., Fx answers a_1, \ldots, a_k Find $\widetilde{S} \in \{0,1\}^n$ that minimizes $\max_{i \in \mathcal{E}_{k-1}, k} |F_i \cdot \widetilde{S} - a_i|$ Output 3.

K= 20n.

$$\left(\frac{9}{10}\right)^k \leq 2^{-2\hbar}$$
Key Step to be shown

Proof.

Key Lemma.

bad condidate

If $S.S \in \{0,1\}$ S.t.

think > d^2n^2 (cliffer on m

coordinates)

Let F E [0,1] be random,

then

 $\mathbb{P}\left[\left|F\cdot(s-\widetilde{s})\right|\leq\frac{\sqrt{m}}{10}\right]\leq\frac{9}{10}$

 $P[|F.(s-3)| > \frac{\sqrt{m}}{10}] > \frac{1}{10}.$

sufficient prob.

mass

Intuition:

t = 8-3 6 {-1, 0, 1}n

Efficient Reconstruction.

Reconstruction Method

Given queries F_1, \ldots, F_k ,

answers a_1, \ldots, a_k Final $\widetilde{S} \in \{0,1\}^n$ that minimizes

max $i \in \{0, \ldots, k\}$ Output \widetilde{S} .

NP-hard.

Constraint Scatisfaction Problem.

Linear Programming $max \quad C \cdot x \\
x \in \mathbb{R}^d$ S.t. $\forall i \in [k], \quad \forall i \cdot x \leq b_i$ Can solve in polynomial time. $\forall k \in [0,1]^n$ $\exists i \in [0,1]^n$ $\exists j = 0.6$ $\exists j = 1$ with prob. 0-6

Attacking Diffix

SELECT COUNT(*) FROM loans
WHERE loanStatus = 'C'
AND clientId BETWEEN 2000 and 3000

private analytics product by Aircloak Check out the Diffix Challenge!

Client ID

2000

Loan Status

1

O Secret

bits

3500

1

Count query

Scoto

Loan Status (iD)

Difference Attack.

SELECT COUNT(*) FROM loans
WHERE loanStatus = 'C' - 1
AND clientId BETWEEN 2000 and 3000

SELECT COUNT(*) FROM loans
WHERE loanStatus = 'C' ~ 1
AND clientId BETWEEN 2000 and 3000
AND clientId != 2744

SELECT COUNT(*) FROM loans
WHERE loanStatus = 'C'
AND clientId BETWEEN 2000 and 3000

Attack by Kobbi Nissim & Aloni Cohen 2018.

```
SELECT COUNT(clientId) FROM loans

WHERE FLOOR(100 * ((clientId * 2)^.7))

= FLOOR(100 * ((clientId * 2)^.7) + 0.5)

AND clientId BETWEEN 2000 and 3000

AND loanStatus = 'C'
```

Dick- Joseph- Schutzman.

Announcement:

- · HWO
- · Recitation on Friday
- · Office Hours