Lecture 18: Differentially Private Machine Learning

Foundations of Privacy Carnegie Mellon University

Announcement

HW 3 released. Due Nov. 14th
Written Component (pdf)
Zip file
Programmiy component (ipynb)

Support Jeremy

https://gofund.me/d922f9f9

Q Search

How it works $\,\,\smallsetminus\,\,$

Start a GoFundMe

Support the Lacomis family after brain surgery

Created 2 days ago 🛛 🔅 Medical, Illness & Healing

Model Training with DP

Given private data $x_1, ..., x_n$, solve $\min_{w \in \mathbb{R}^d} L(w) \equiv \frac{1}{n} \sum_{i=1}^n \ell(w; w_i)$ Empirical Risk.

subject to differential privacy

DP-SGD (in Theory)

DP-SGD (in Practice)

At each iteration t.

• Average *clipped* gradient estimate:

$$\mathbf{x}_{t+1} = \mathbf{x}_t - \eta \left(g_t + Z_t \right), \ Z_t \sim \mathcal{N}(0, \sigma^2 I_d)$$

 $\begin{array}{rcl} & & If \ || \ g ||_{2} > G \\ & & \text{what} \quad \text{is} \quad C(ip(g,G)) \\ & & \left(g \cdot \frac{1}{\|g\|_{2}}\right) \cdot G \end{array}$

Privacy Guarantee for DP-SGD (with Clipping) [BST14,ACGMMTZ16]

Gradient clipping can create bias

 Xiangyi Chen, Z. S.W., Mingyi Hong "Understanding Gradient Clipping in Private SGD: A Geometric Perspective" In NeurIPS 2020 (Spotlight)

Bad Example I

$$\sum_{i=1}^{w, \ \forall_i \in \mathbb{R}} Loss: L(x) = \frac{1}{3} \sum_{i=1}^{3} \frac{1}{2} (w - x_i)^2$$

where $x_1 = x_2 = -3$ and $x_3 = 9$.
 $\Rightarrow Optimum \ w^* = 1$

Clipped gradient at w^* $\mathbb{E}[\operatorname{Clip}(\nabla_x \mathscr{C}(w^*; x_i), 1)] = 1/3$ \Rightarrow push iterates away from opt

₩ ₩L(, *

Bad Example 2

Loss:
$$L(w; x) = \frac{1}{2} \sum_{i=1}^{2} \frac{1}{2} (w - x_i)^2$$

where $x_1 = 3, x_2 = -3$
 \Rightarrow Optimum $w^* = 0$

Clipped gradient for any $w \in [-2,2]$ $\mathbb{E}[\operatorname{Clip}(\nabla_x \mathscr{C}(w;x_i),1)] = 0$ $\Rightarrow \text{ does not converge to opt}$

Adversarial Effects of Clipping

Do these occur in practical instances?

DP-SGD on **MNIST**

- DP-SGD with Clip norm G = 160 epochs, $\epsilon \approx 3$, test accuracy $\approx 96.5 \%$
- DP-SGD with Clip norm G = 0.160 epochs, $\epsilon \approx 3$, test accuracy $\approx 92\%$

Histogram of cosine between stochastic gradients and true gradient

Symmetric structures in gradients still lead to convergence under clipping.

Gradient Distribution of NN

Visualization with random projection

Figure 1: Gradient distributions on MNIST (top row) and CIFAR10 (bottom row) at the end of different epochs (indexed by columns). The gradients for epoch 0 are computed at initialization (before training).

Gradient Distribution of NN

Multiple random projections

Figure 2: Gradient distributions on MNIST at the end of epoch 9 projected using different random matrices.

Convergence Guarantee for DP-SGD (in Theory)

Consider DP-SGD with Projection

Theorem: Let $L: C \to \mathbb{R}$ be convex and L-Lipschitz. Suppose $C \subseteq \mathbb{R}^d$ is a convex set with diameter R. Let w^* be the minimizer of L in the set C. o For regular SGD (w/ projection) $L(\hat{\omega}) - L(\omega^*) \leq \frac{RL}{\sqrt{T}}$ • For DP-SGD (w/ projection), $\mathbb{E}\left[L(\hat{w}) - L(w^*)\right] \leq O\left(\frac{RL\sqrt{d}(n(\gamma_{\delta}))}{n\varepsilon}\right)$

Leveraging low-dimensional structure in gradients

 Yingxue Zhou, Z. S.W., Arindam Banerjee
"Bypassing the Ambient Dimension: Private SGD with Gradient Subspace" In ICLR 2021

Dimensionality

Spectrum of Gradient Second Moments

Eigenvalues of $M_t = \mathbb{E}[\nabla \mathcal{E}(x_t, s_i) \nabla \mathcal{E}(x_t, s_i)^{\mathsf{T}}]$

Order or eigenvalues from largest to smallest Ambient dimension $d \approx 130,000$

Projected DP-SGD (PDP-SGD)

Assume small amount of public data (no privacy concern)

PDP-SGD [ZWB21]

- For t = 1, ..., T
 - Gradient estimate on a mini-batch B_t : $\tilde{g}_t \leftarrow$ noisy gradient estimate with Gaussian noise
 - Use public data to compute projection Π_k onto the top-k eigenspace of M_t
 - Update :

 $x_{t+1} = x_t - \eta \, \Pi_k \tilde{g}_t$

Balancing two sources of error

- Error due to projection $\|\Pi_k \nabla \ell(x; s_i) - \nabla \ell(x; s_i)\|$
- . Gradient perturbation in the subspace $\approx \frac{\sqrt{k}}{n\epsilon}$ (from \sqrt{d} to \sqrt{k})

(a) MNIST

Training Dynamics

What if DPSGD is not applicable? -- "PPICAUIC; (generdized) Linear Repression (Classification (e-q. logistic, SVM) Neural Networks

Reduce the problem to Non-private ML.

Subsample and Aggregate

Private Aggregation of Teacher Ensembles (PATE)

