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Announcement

• HW 3 released. Due Nov. 14th

Written Component pdf
Programming component ipgnb

2 p file
for submission



Support Jeremy
https://gofund.me/d922f9f9



Model Training with DP

Given private data , solve 

 

subject to differential privacy

x1, …, xn

min
w∈ℝd

L(w) ≡ 1
n

n

∑
i=1

ℓ(w; wi)
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DP-SGD (in Theory)

Differentially Private SGD [BST14, SCS13]

• At each iteration ,

• Gradient estimate on a mini-batch  : 

• Noisy gradient update :  
,  

t
Bt

gt = 1
|Bt | ∑

i∈Bt

∇ℓ(wt; xi)

wt+1 = wt − η (gt + Zt)
Zt ∼ '(0,σ2Id)

Privacy Proof
assumes  is -Lipschitz 

for all 
ℓ L

x

Set  to scale with 
∥∇ℓ(xt; si)∥2 ≤ L

σ L
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DP-SGD (in Practice)

Differentially Private SGD [ACGMMTZ16]

• At each iteration ,

• Average clipped gradient estimate:  

• Noisy gradient update :  
,  

t

gt = 1
|Bt | ∑

i∈Bt

Clip(∇ℓ(wt; xi), G)

xt+1 = xt − η (gt + Zt) Zt ∼ '(0,σ2Id)

Gradient Clipping:

Clip(g, G) = g min {1, G
∥g∥2 }

Set  to scale with σ G
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Privacy Guarantee for DP-SGD (with Clipping)

Theorem: DP-SGD with gradient clipping of threshold  
satisfies -differential privacy, if the noise rate 

 

for some constant  and  

G
(ϵ, δ)

σ ≥ a
C q T ln(1/δ)

ϵ

a q = |Bt |
n

.

[BST14, ACGMMTZ16]

How about convergence and optimality?
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Gradient clipping can create bias
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• Xiangyi Chen, Z. S. W., Mingyi Hong 
“Understanding Gradient Clipping in Private SGD: A Geometric Perspective” 
In NeurIPS 2020 (Spotlight)



Bad Example 1

Loss:   

where  and .  
 Optimum 

L(x) = 1
3

3

∑
i=1

1
2 (w − xi)2

x1 = x2 = − 3 x3 = 9
⇒ w⋆ = 1

Clipped gradient at 

 push iterates away from opt

w⋆

-[Clip(∇xℓ(w⋆; xi),1)] = 1/3
⇒
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Bad Example 2

Loss:   

where  
 Optimum 

L(w; x) = 1
2

2

∑
i=1

1
2 (w − xi)2

x1 = 3, x2 = − 3
⇒ w⋆ = 0

Clipped gradient for any 

 does not converge to opt

w ∈ [−2,2]
-[Clip(∇xℓ(w; xi),1)] = 0

⇒
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Adversarial Effects of Clipping

Example 1 Example 2

Do these occur in practical instances?
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DP-SGD on MNIST

• DP-SGD with Clip norm  
60 epochs, , test accuracy 

• DP-SGD with Clip norm  
60 epochs, , test accuracy 

C = 1
ϵ ≈ 3 ≈ 96.5 %

C = 0.1
ϵ ≈ 3 ≈ 92 %
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A glimpse of gradient distribution 

Histogram of cosine between 
stochastic gradients and true gradient
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Symmetric structures in gradients still 
lead to convergence under clipping.
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Gradient Distribution of NN
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Visualization with random projection



Gradient Distribution of NN
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Multiple random projections



Convergence Guarantee for DP-SGD (in Theory)

Theorem: Let  be convex and -Lipschitz.  
Suppose  is a convex set with diameter . 

Let  be the minimizer of  in the set .

L : C → ℝ L
C ⊆ ℝd R

w* L C
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Leveraging low-dimensional structure in 
gradients
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• Yingxue Zhou, Z. S. W., Arindam Banerjee 
“Bypassing the Ambient Dimension: Private SGD with Gradient Subspace” 
In ICLR 2021



Dimensionality

O (
C d ln(1/δ)

nϵ ) + 1
T

T

∑
t=1

W∇f(xt),C(p̃t, pt)

DP-SGD without clipping
Depends on ambient 

dimension d

Clipping bias
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Spectrum of Gradient Second Moments

Order or eigenvalues from largest to smallest 
Ambient  dimension  130,000d ≈

SGD DP-SGD σ = 1 DP-SGD σ = 2

[ZWB21]

Eigenvalues of  
Mt = -[∇ℓ(xt, si)∇ℓ(xt, si)⊺]
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Projected DP-SGD (PDP-SGD)

PDP-SGD [ZWB21]

• For 

• Gradient estimate on a mini-batch  :  
noisy gradient estimate with Gaussian noise

• Use public data to compute projection  onto the 
top-  eigenspace of 

• Update :  

t = 1,…, T
Bt

g̃t ←
Πk

k Mt

xt+1 = xt − η Πkg̃t

Assume small amount of public data (no privacy concern)
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Balancing two sources of error

• Error due to projection 

• Gradient perturbation in the subspace  

(from  to )

∥Πk ∇ℓ(x; si) − ∇ℓ(x; si)∥

≈ k
nϵ

d k
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Training Dynamics
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What if DPSGD is not applicable

t
generalized linear q

Regression

classification eg logistic SVM
Neural
Networks

Reduce the problem to

Non private ML



Subsample and Aggregate

charge it

charge one blockK
Hooks 7

Run some TIAlgo
without DP

DP aggregation

Laplace Exponential



 Private Aggregation of Teacher Ensembles (PATE)

unlabeled

data

Dpt
Aggregation Step


