Lecture 17

- Private Machine Learning
 - DP SGD
 - Privacy Analysis
 - DPSGD in code.

Announcement: Release HW3 this week includes: O Written Component

D Programming component.

Recitation (in - person)

Empirical
$$\rightarrow L(w) = \frac{1}{n} \sum_{i=1}^{n} \ell(w, x_i)$$

Risk.

Memorization" Attack

Extracting Training Data from Large Language Models

Nicholas Carlini¹ Florian Tramèr² Eric Wallace³ Matthew Jagielski⁴

Ariel Herbert-Voss^{5,6} Katherine Lee¹ Adam Roberts¹ Tom Brown⁵

Dawn Song³ Úlfar Erlingsson⁷ Alina Oprea⁴ Colin Raffel¹

¹Google ²Stanford ³UC Berkeley ⁴Northeastern University ⁵OpenAI ⁶Harvard ⁷Apple

Private SGD.
$$(DP-SGD)$$

$$| loss | feasible | fearning | Noise | rate | fraction | for the set | fraction | f$$

 W_{T}

Privacy Proof Proof idea: Think of releasing W1, W2, ..., WT. · Suffices to release the update between iterates $W_0 \leftarrow \text{npdate} \longrightarrow] W_1 \leftarrow \text{npdate} \longrightarrow] W_2 \cdots W_T$ · Suffices to release the sequence of gradient estimates $\hat{g_1}, \hat{g_2}, \dots, \hat{g_7}$ The output is a post-processing Show releasing $(\hat{g}_1, \hat{g}_2, \dots, \hat{g}_T)$ satisfies DP. ① Each step (releasing \tilde{g}_t) satisfies (ξ, ξ) -DP 2) Adaptive composition across T steps

Adaptive Composition.

Input
$$\chi$$

Composition

A is $(E.S)$
 g_1
 g_2
 g_3

Suppose each step A_1, \ldots, A_T is (ξ, ξ) -DP.

What are the values of $\widetilde{\xi}$ and $\widetilde{\xi}$?

• (Basic) Composition: $\widetilde{\xi} = T \varepsilon$, $\widetilde{\xi} = T \delta$.

• Advanced Composition:
$$\mathcal{E} = \mathcal{E} \cdot \sqrt{27} \ln(\frac{1}{8'}) + T \cdot \mathcal{E} \frac{e^{\mathcal{E}} - 1}{e^{\mathcal{E}} + 1}$$

$$\mathcal{E} = T8 + 8'$$

If $\mathcal{E} < \frac{1}{NT}$ $\left(\mathcal{E} \,\overline{NT}\right)^2 \quad is \quad "smaller" \quad than \quad \mathcal{E} \,\overline{NT}$ Then \mathcal{E} is in the order of $\mathcal{E} \cdot \overline{NT} \left(n\left(\frac{1}{S'}\right)\right)$ $<< \mathcal{E} \cdot \overline{T}$ for large T.

Numeric Example. $\mathcal{E} = \frac{1}{1000}, \quad \mathcal{S}$ T = 500,Basic Composition: $\mathcal{E} = 0.5, \quad \mathcal{S} = T.8$ Advanced Composition: $\mathcal{E} < 0.1, \quad \mathcal{S} = 10^{-6} + T.8$

Privacy Proof Proof idea: Think of releasing W1, W2, ..., WT. · Suffices to release the update between iterates $W_0 \leftarrow \text{npdate} \longrightarrow] W_1 \leftarrow \text{npdate} \longrightarrow] W_2 \cdots W_T$ · Suffices to release the sequence of gradient estimates $\hat{g_1}, \hat{g_2}, \dots, \hat{g_7}$ The output is a post-processing Show releasing $(\hat{g}_1, \hat{g}_2, \dots, \hat{g}_T)$ satisfies OP. This step. $\longrightarrow \mathbb{D}$ Each step (releasing \widetilde{g}_t) satisfies (ε, δ) - \mathbb{D} ? 2) Adaptive composition across T steps/

Multivariate Gaussian Mechanism

e.g.

average gradient $f: X^n \mapsto \mathbb{R}^d$ $\Delta_2(f) = \max_{\substack{X,X' \\ \text{neighbors}}} \|f(x) - f(x')\|_2$

 $A(x) = f(x) + N(0, \frac{2\Delta_{2}^{2} \log(2/5)}{\epsilon^{2}} I_{dxd}$ $f(x) = f(x) + N(0, \delta^{2}) + N(0, \delta^{2})$ $f(x) = f(x) + N(0, \delta^{2}) + N(0, \delta^{2})$ $f(x) = f(x) + N(0, \delta^{2}) + N(0, \delta^{2})$ $f(x) = f(x) + N(0, \delta^{2}) + N(0, \delta^{2})$ $f(x) = f(x) + N(0, \delta^{2}) + N(0, \delta^{2})$ $f(x) = f(x) + N(0, \delta^{2}) + N(0, \delta^{2})$ $f(x) = f(x) + N(0, \delta^{2}) + N(0, \delta^{2}) + N(0, \delta^{2})$ $f(x) = f(x) + N(0, \delta^{2}) + N(0, \delta$

What is Δ_z ?

$$f: \mathcal{X}^{n} \longrightarrow \mathbb{R}^{d}$$

$$f: \mathcal{X}^{n} \longrightarrow \mathbb{R}^$$

Privacy Amplification by Sub-sampling.

→ first sample minibatch Bt

of size 1.

→ Compute gradient. Using Bt.

11

general: Suppose $A: X \mapsto Y$ is $(\xi, \xi)-DP$.

an algo that takes input a data set of size 1.

(e.g., add gaussian noise to the gradient of one example)

Consider
$$A': \chi^n \mapsto \chi$$

Random $-: -> \overline{1} \leftarrow unif \{1, ..., n\}$

Return $A(\chi_{\underline{1}})$

A' is
$$(\mathcal{E}', \mathcal{E}') - DP$$
 where
$$\mathcal{E}' = \ln\left(1 + \frac{e^{\varepsilon} - 1}{n}\right) \stackrel{?}{\sim} \frac{\mathcal{E}}{n}$$
 for $\mathcal{E} = 1$
$$\mathcal{E}' = \frac{\mathcal{E}}{n}$$

Can generalize to
$$|Bt| > 1$$
.
$$\varepsilon' \approx \frac{|Bt|}{n} \varepsilon , \quad S' \approx \frac{|Bt|}{n} \cdot S$$

Wrapping up the privacy proof.

- · For each step: Sub-sampled Gaussian mechanism
- · Apply Adaptive Composition.

$$\begin{array}{lll} \text{DP-SGD} & \text{Cin Theory} \\ \text{Init} : & \text{Wo} \in \text{C} \\ \\ \text{For } t=1, \ldots, 7 : \\ & \text{Random subsample} & \text{Bt} \subseteq \{1,\ldots,n\} \\ & \text{"mini-batch"} \\ & g_t = \frac{1}{|B_t|} \sum_{i \in B_t} \nabla_{\text{Wo}} \ell(w_{t-i}; \chi_i) & \text{Assume} \\ & g_t = g_t + N(0, \delta^2 I_t) & \text{for every not} \ell \times \text{Lipschits} \\ & \text{or gradient} & \nabla_{\text{Wo}} \ell(w_i; \chi_i) & \text{for every not} \ell \times \text{Re} \\ & \text{Ut} = w_{t-1} - \eta \cdot \widehat{g}_t & \text{for every not} \ell \times \text{Re} \\ & \text{Wt} = \text{argmin} & \text{M} - \text{Ut} \|_2 & \text{for every not} \ell \times \text{Re} \\ & \text{DP-SGD} & \text{(in practice)} \\ & \text{For } t=1,\ldots,T \\ & \text{Sample mini-botch} & \text{Bt} \subseteq \{1,\ldots,n\} \\ & g_t = \frac{1}{|B_t|} \sum_{i \in B_t} \text{Clip} \left(\nabla_{\text{el}} \ell(w_i; \chi_i), G \right)_{\text{E}} & \text{Sprink} \\ & \text{Glip} \left(g,G\right) = g & \text{min} \left(1,\frac{G_1}{\|g\|_2}\right). & \text{if two} \\ & g_{\text{radient}} & \text{If the process } \\ & g_{\text{radient}} & \text{If the process } \\ & g_{\text{radient}} & \text{If two} \\ & g_{\text{radient}} & \text{If the process } \\ & g_{\text{radient}} & \text{If the$$

Convergence / Optimality.

Theorem. Let $L: C \rightarrow R$ be convex and G-Lipschitz $C \subseteq R^{d} \text{ be } \alpha \text{ closed and convex set}$ (Part a) $W^{*} \in \operatorname{argmin} L(w)$ • For regular PGD, set $\eta = \frac{R}{GJT}$, then $L(\widehat{w}) - L(w^{*}) \leq \frac{RG}{JT}$ • For noisy PGD, set $\eta, T, 3^{2}$ so that, $\mathbb{E}\left[L(\widehat{w}) - L(w^{*})\right] \leq O \frac{RG \sqrt{d} \ln(V_{B})}{RE}$

Convergence / Optimality. Theorem. Let $L: C \rightarrow R$ be convex and G-lipschitz $C \subseteq R^d \text{ be a closed and convex set}$ (Part a) with diameter Rwith diameter RFor regular PGD, set $\eta = \frac{R}{GJT}$, then $L(\widehat{w}) - L(w^*) \leq \frac{RG}{JT}$ • For noisy PGD, set η, T, δ^2 so that, $\mathbb{E}\left[L(\widehat{w}) - L(w^*)\right] \leq O\left(\frac{RG}{NT}\right)$ "Cost of princy" Gap: $\frac{M}{NE}$ "Cost of princy" Gap: $\frac{M}{NE}$

Proof (for regular PGD).

$$w^{*} = \underset{w \in C}{\operatorname{argmin}} L(w)$$
 2 key Buantities

Claim. (Measure of Progress).

 $L(w_{t}) - L(w^{*}) \leq \frac{1}{2} \frac{||g_{t}||^{2}}{2} + \frac{1}{2\eta} \frac{||w_{t} - w^{*}||^{2} - ||w_{t+1} - w^{*}||^{2}}{2}$

Excess Risk

Reduction on Squared distances.

Proof for $\hat{w} = \frac{1}{7} \stackrel{7}{\underset{\leftarrow}{\sum}} w_t$

By Jensen Inequality for Convex function
$$L(\widetilde{w}) \leq \frac{1}{T} \sum_{t} L(w_{t})$$

Compare $\omega / \frac{1}{T} \left(T \cdot L(w_{t})\right)$ w_{t} w_{z}

$$w_t$$
 w_t w_t w_t w_t w_t

$$L(\widehat{\omega}) - L(\widehat{\omega}^{*}) \leq \frac{1}{T} \left(\sum_{t} \left(L(\omega_{t}) - L(\omega^{*}) \right) \right) \qquad \text{Use} \qquad \text{"Progress Claim"}$$

$$\leq \frac{\eta}{2} \cdot \max_{t} \| g_{t} \|^{2} + \frac{1}{2\eta T} \left(\| \omega_{2} - \omega^{*} \|_{2}^{2} - \| \omega_{T+1} - \omega^{*} \|^{2} \right)$$

$$\leq \frac{\eta}{2} \cdot G^{2} + \frac{1}{2\eta T} \left(\| \omega_{2} - \omega^{*} \|_{2}^{2} \right)$$

$$\leq \frac{\eta}{2} \cdot G^{2} + \frac{R^{2}}{2\eta T} = \frac{GR}{\sigma T}$$

$$\leq \frac{R}{G} \cdot \frac{1}{1T}$$

$$\hat{g}_t = g_t + N(0, 3^2 I)$$

"New" Progress Claim.

$$\mathbb{E}\left[\left|\left|\mathcal{G}_{t}\right|\right|^{2}\right]+\frac{1}{2\eta}\mathbb{E}\left[\left|\left|w_{t}-w^{\star}\right|\right|^{2}-\left|\left|w_{t}-w^{\star}\right|\right|^{2}\right]$$

Proof.
$$\mathbb{E}[L(w_{+})-L(w_{-}^{*})] \leq \mathbb{E}[\langle \eta g_{t}, w_{+}-w_{-}^{*} \rangle]$$

$$= \mathbb{E}\left[\left\langle 1 \mathbb{E}\left[\hat{g}_{t}|w_{t}\right], w_{t} - w^{*}\right\rangle\right]$$

$$\mathbb{E}\left[\|\mathcal{J}_t\|_2^2\right] \leq \|\mathcal{J}_t\|_2^2 + \left[ds^2\right]$$

What about Noncovex Case?

Smoothness. (Lîpschit≥ Gradient)

$$\|\nabla L(w) - \nabla L(w)\|_2 \leq \beta \|w - w'\|_2$$

$$L(w') \leq L(w) + \nabla L(w)^{\mathsf{T}} (w'-w) + \frac{\beta}{2} \|w-w'\|^2$$

Can Show: w_1, \dots, w_T

$$\frac{1}{T} = \|\nabla L(w_f)\|_{L^{2}}^{2} \longrightarrow O\left(\frac{1}{NT}\right). \quad (non-OP)$$

$$\frac{\sqrt{N}}{\sqrt{N}} = \sqrt{N} \left(\frac{1}{NT}\right). \quad (OP)$$