Lecture 16

- Private Machine Learning – DP Gradient Descent - Privacy Analysis.

Optimization in ML

Linear Classification

SAT Score

(Private) Optimization.

Given a clata set
$$X = (X_1, \dots, X_n)$$

loss function: l
feasible set of parameters : $C \subseteq R^d$
(weights)

$$\begin{array}{lllllll} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

¢.

Projected Gradient Descent (PGD)
Loss Fracible learning it rounds
PGD (L, C,
$$\eta$$
, T):
Init: $W_0 \in C$ (any point)
For $t = 1, ..., T$:
gradient: $g_t = \nabla L(W_{t-1})$
 $U_t \leftarrow W_{t-1} - \eta g_t$
Projection: $W_t \leftarrow argmin || W - U_t ||_2$
 U_{t-1}
 U_{t-1}

Robustness to noise in gradient estimation.
$$(g_t)$$

Two sources of noise:
 \rightarrow For efficiency:
Sample a minibatch $B \subseteq \overline{1}, 2, ..., n_j^3$
gradient estimate $\widetilde{g}_t = \frac{1}{|B|} \sum_{i \in B} \nabla_{ib} L(w_{t-1}, \chi_i)$.
 \rightarrow For privacy: Add Gaussian Noise
 $\widetilde{g}_t = g_t + N(D, \delta^2 I_d)$ from Gaussian
In both cases,
 \widetilde{g}_t is an unbiased estimate of g_t
 $E[\widetilde{g}_t] = g_t$
Stochastic Gradient Descent (SGD)

Memorization" Attack

Extracting Training Data from Large Language Models

Nicholas Carlini ¹	Florian Tramèr ²	Eric Wallace ³	Matthew Jagielski ⁴
Ariel Herbert-Voss ^{5,6}	Katherine Lee ¹	Adam Roberts ¹	Tom Brown ⁵
Dawn Song ³	Úlfar Erlingsson ⁷	Alina Oprea ⁴	Colin Raffel ¹
¹ Google ² Stanford ³ UC	C Berkeley ⁴ Northeast	ern University ⁵ Ope	enAI ⁶ Harvard ⁷ Apple

Private SGD. (DP-SGD)

$$\begin{bmatrix}
loss & faisible & farning & Noise
Stock & SGD((LS) = f_{1} \stackrel{r}{\underset{i=1}{2}} l(i; x_{i}), C, \eta, B) := \\
lnit = W_{0} \in C \\
For t = 1, ..., T: \\
Random & subsample & Bt \subseteq \{1, ..., n\} \\
"minis batch" \\
g_{t} = \frac{1}{|B_{t}|} \stackrel{r}{\underset{i=B_{t}}{\sum}} \nabla_{0} l(w_{t-1}; x_{i}) \\
Gradient \\
Langevin \\
Dynamics (SGLD) \\
M_{t} = w_{t-1} - \eta \cdot \tilde{g}_{t} \\
W_{t} = argmin \\
M_{t} = w_{t} \\
Output : \frac{1}{T} \stackrel{r}{\underset{t=1}{2}} w_{t} \\
Or \\
W_{T}
\end{bmatrix}$$

Privacy Proof
Proof idea: Think of releasing
$$W_1, W_2, ..., W_T$$
.
• Suffices to release the update between iterates
 $W_0 \in update \longrightarrow W_1 \in update \longrightarrow W_2 \dots W_T$
• Suffices to release the sequence of gradient estimates
 $\tilde{J}_{\perp}, \tilde{J}_{\perp}, \dots, \tilde{J}_{T}$
The output is a post-processing
Show releasing $(\tilde{J}_1, \tilde{J}_2, \dots, \tilde{J}_T)$ satisfies DP.
 O Each step (releasing \tilde{J}_{\perp}) satisfies (E,S)-DP
(2) Adaptive composition across T steps

Adaptive Composition.

Suppose each step
$$A_{1}, \dots, A_{T}$$
 is (ε, s) -DP.
What are the values of $\tilde{\varepsilon}$ and \tilde{s} ?
• (Basic) Composition = $\tilde{\varepsilon} = T\varepsilon$, $\tilde{s} = T\delta$.

• Advanced Composition :
$$\widehat{\mathcal{E}} = (\widehat{\mathcal{E}} \cdot \sqrt{2T}) \ln(\frac{1}{8}) + T \cdot \widehat{\mathcal{E}} \cdot \frac{e^{\widehat{\mathcal{E}} - 1}}{e^{\widehat{\mathcal{E}} + 1}}$$

 $\widehat{\mathcal{S}} = T \mathcal{S} + \underbrace{\mathcal{S}}'_{>0} \mid \quad \text{for } \mathcal{E} \leq 1 , \quad e^{\widehat{\mathcal{E}}} \approx 1 + \mathcal{E} \Rightarrow \frac{e^{\widehat{\mathcal{E}} - 1}}{e^{\widehat{\mathcal{E}} + 1}} \approx \frac{\mathcal{E}}{2}$
 $\Rightarrow T \cdot \widehat{\mathcal{E}} \cdot \frac{e^{\widehat{\mathcal{E}} - 1}}{e^{\widehat{\mathcal{E}} + 1}} \approx \frac{T}{2} \cdot \widehat{\mathcal{E}}^{2}$
If $\mathcal{E} < \frac{1}{\sqrt{T}}$
 $(\widehat{\mathcal{E}} \cdot \sqrt{T})^{2}$ is "smaller" than $\widehat{\mathcal{E}} \cdot \sqrt{T}$ ($n(\frac{1}{8})$)
Then $\widehat{\mathcal{E}}$ is in the order of $\widehat{\mathcal{E}} \cdot \sqrt{T}$ ($n(\frac{1}{8})$)

Numeric Example. $\varepsilon = \frac{1}{1000}$, 8 T = 500, Basic Composition : $\tilde{\varepsilon} = 0.5$, $\tilde{S} = T.8$ Advanced Composition : $\tilde{\varepsilon} \leq 0.1$, $\tilde{S} = 10^{-6} + T8$