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1 A Second Example: The Laplace Mechanism

Another natural way to add randomness to a computation is to simply add noise to the output of
some function f evaluated on the data. This function could just return a single real number (like a
proportion or a sum), or it could be something more complex that returns a vector in Rd (such as
the roughly 3 billion statistics produced by the US Census Bureau from its decennial census).

When does adding noise satisfy di�erential privacy? How does the choice of the function f
we evaluate a�ect the amount of noise we must add? One basic idea is to look at how sensitive a
function is to a change in one of its input records. We measure this via the global sensitivity of f :

De�nition 1.1. Given a function f : Un → Rd , we de�ne the global sensitivity of f in the `1 norm
to be

GS f , `1 = sup
x,x′ neighbors in Un

‖ f (x) − f (x′)‖1 . (1)

(We often drop the subcript `1, and write simply GS f .)

For some functions f , it is tricky to get our hands on the exact global sensitivity, and it is easier
to work with an upper bound. A function has global sensitivity at most ∆ (in the `1 norm) if for all
pairs of neighboring data sets x, x′ ∈ Un :

‖ f (x) − f (x′)‖1 ≤ ∆ . (2)

The notation ‖ · ‖1 refers to the `1 norm of a vector, which is sum of the absolute values of the
vector’s entries. For example, ‖(1, 0,−3)‖1 = 4, and ‖(1, 1, 1, 1, 1, 1)‖1 = 6. In 1 dimension, the `1
norm is just the absolute value.

Examples of global sensitivity A proportion f (x) = 1
n
∑n

i=1 φ(xi ), where φ : U → {0, 1}, has
global sensitivity GS f =

1
n . The same is true if φ maps records to numbers in the interval [0, 1].

To take another example, consider a histogram: given a data set x ∈ Xn and a partition ofU
into d disjoint sets B1, ...,Bd (think of these as “bins” or “types” of items inU), we count how many
records there are of each type. f (x) = (n1,n2, ...,nd ) where nj = #

{
i : xi ∈ Bj

}
. So, for example, if

we wanted to compute the number of residents of each of the 50 US states from a census of the US
population, we would be asking a hstogram query. The global sensitivity of a histogram query is at
most 2, regardless of how many bins there are.

Exercise 1.2. Suppose we want to compute the average of a set of numbers known to lie in the
interval [0,R] on a data set of size n. What is the sensivitiy of the average?

The Laplace Mechanism If f has sensitivity ∆, we can satisfy ε-DP by adding noise from a
Laplace distributionwith scale ∆

ε , independently to each entry of the output. The Laplace distribution,
also called the double exponential distribution, is sort of a pointy Gaussian (Fig.1). The mean-0,
scale-1 Laplace has density h(y) = 1

2e
−|y | for y ∈ R. This distribution has expected absolute value 1,
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and standard deviation
√
2. We can scale the distribution by a positive number λ > 0, to get the

general form Lap(λ) with density

Lap(λ) : a distribution on R with p.d.f. hλ(y) =
1
2λ exp(−|y |/λ)

Figure 1 illustrates the probability density function for a few values of λ. If we translate the
distribution to have mean µ, then the density becomes 1

2λ exp(−|y − µ |/λ).
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Figure 1: The probability density function of the Laplace distribution with λ ∈ {1, 2, 4, 7}.

The resulting algorithm (Algorithm 1) is called the Laplace mechanism1, and is a basic building
block for the design of many other di�erentially private algorithms. If used to estimate a proportion,
it produces far more accurate estimates than randomized response (for the same privacy budget)—
see Exercise 1.6.

Algorithm 1: Laplace mechanism ALap(ε, x)
Input: Data set x = (x1, ...,xn) ∈ Un and parameter ε > 0.

1 Receive a query f : Un → Rd . Let GS f denote its global sensitivity in the `1 norm;
2 return f (x) + (Z1, ...,Zd ) where Zi ∼ Lap

(
GS f
ε

)
are i.i.d.

Note that instead of the actual global sensitivity GS f , we may use any upper bound ∆ ≥ GS f .

Theorem 1.3. The Laplace mechanism is ε-di�erentially private.

Proof. Fix two neighboring data sets x and x′ inUn , and a query f : Un → Rd . Let ∆ = GS f be
the `1 global sensitivity of f . Let µ = f (x) and µ ′ = f (x′). We know that the `1 norm of µ − µ ′
is at most ∆. Comparing the output distributions of ALap on x and x′ thus means comparing two
Laplace distributions that have been shifted relative to one another by µ − µ ′.

Because we add noise independently to each entry of the output, the density of the output at
vector y on input x can be written as a product:

hx(y) = ε
2∆e
− ε∆ |y1−µ1 | × ε

2∆e
− ε∆ |y2−µ2 | × · · · × ε

2∆e
− ε∆ |yd−µd | , (3)

1Here and elsehwere in the course, the term “mechanism”, inherited from literature on game theory, just means
“algorithm”.

3



which can be simpli�ed to hx(y) =
( ε
2∆

)d
e−

ε
∆ ‖y−µ ‖1 . If we look at the ratio of the densities for x and

x′ at the same output y, we get

hx′(y)
hx(y)

= e−
ε
∆ ( ‖y−µ

′ ‖1−‖y−µ ‖1). (4)

By the triangle inequality, the di�erence ‖y − µ‖1 − ‖y − µ ′‖1 is at most ‖µ − µ ′‖1, which is at most
∆. We thus get:

hx′(y)
hx(y)

≤ e
ε
∆ ‖µ−µ

′ ‖1 ≤ e
ε
∆ ·∆ = eε . (5)

And that is enough to conclude the mechanism is ε-DP: For any measurable set E, we have
Pr(ALap(ε, x) ∈ E =

∫
y∈E hx(y). So if the ratio of the densities is bounded everywhere by eε , then so

is the ratio of the probabilities of any given event E. �

Thus, we can guarantee di�erential privacy by adding noise to the output of a function that
scales with the function’s sensitivity. Histograms, for example, �t the framework well: we can get
away with adding error whose expected magnitude is 2/ε to each of the bin counts, regardless of
the number of bins.

The following lemma provides useful bounds on the magnitude of the Laplace mechanism’s
error.

Lemma 1.4.
1. If Z ∼ Lap(λ) is a Laplace-distributed random variable, we have

(a) E (|Z |) = λ
(b)

√
E (Z 2) =

√
2λ

(c) For every t > 0: P (|Z | > tλ) ≤ exp(−t).
2. Let Z1, ...,Zd are i.i.d. Lap(λ) random variables, and letM = max(|Z1 |, ..., |Zd |).

(a) E (‖(Z1, ...,Zd )‖1) = dλ
(b) For every t > 0: P (M > λ(ln(d) + t)) ≤ exp(−t).
(c) E (M) ≤ λ(ln(d) + 1).

Exercise 1.5. Suppose we use the Laplace mechanism to estimate the number of individuals in a
data set who reside in each of the 3,143 counties2 in the US, using parameter ε = 0.1. What does
Lemma 1.4 imply about the expected error of the count for Su�olk County, Mass.? What does it
imply about the expectation of the largest error in the estimate of any county population?

Exercise 1.6. Suppose we use the Laplace mechanism to estimate the fraction f (x) = 1
n
∑n

i=1 φ(xi )
where φ : U → [0, 1] is a predicate. Give an expression for the data set size n(α , ε) at which
the Laplace mechanism’s root mean square error

√
E

(
(A(x) − f (x))2

)
drops below α (when run

with privacy parameter ε). How does this compare to the analogous calculation for Randomized
Response? What happens to n(α , ε) when α is halved? When ε is halved?

Notice that the accuracy of the Laplace mechanism is pretty bad when ε is very small. Suppose
we want to estimate an fraction (as in the Exercise 1.6). If we set ε = 1/n, then the standard
deviation of the Laplace mechanism is

√
2 · ∆

1/n =
√
2 (since ∆ = 1/n in this case). But the fraction

2This number includes county equivalents, and was drawn from the Wikipedia article “List of United States counties
and county equivalents” in February 2021.
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can only take values between 0 and 1—the noise is thus of larger magnitude than the “‘signal” one
is trying to release. This feature is inherent. As we will see next lecture, di�erentially private
algorithms cannot yield any useful information when ε < 1/n.

Exercise 1.7. Prove Lemma 1.4. To bound E (M) in the �nal statement, it may be useful to recall
that for any nonnegative random variable M , we have E (M) =

∫ ∞
x=0 Pr(M > x). This inequality

allows us to compute expectations in terms of “tail bounds”.

Summary

1.1 Key Points

• To reason about information leakage and con�dentiality we must look at the algorithms that
process the data, not only the form of the output.

• Di�erential privacy is one way to quantify how much an algorithm leaks about individual
inputs. It is parametrized by a positive real number ε , which bounds the amount of leakage.

• Randomized response and the Laplace mechanism satisfy ε-DP. For the same privacy budget,
the Laplace mechanism adds far less error.

Additional Reading and Watching

• The paper that de�ned di�ernetial privacy [DMNS06, DMNS16]
• A nontechnical introduction to DP [WAB+18]
• Dwork and Roth book, Chapter 2 [DR14]
• Videos from the MinutePhysics Youtube channel: “Protecting Privacy with MATH” and

“When It’s OK to Violate Privacy”, 2019.
• Tutorial talks by K. Ligett (NeurIPS 2016 Tutorial) and A. Smith (NASIT 2019 Tutorial).
• For further discussion of composition attacks, see [GKS08]
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