
Chapter 2 — Di�erential Privacy Fundamentals
Draft version: September 13, 2021

Contents

1 De�ning “Privacy” 2

2 A First Example: Randomized Response 3

3 Di�erential Privacy 5

4 Interpreting DP: Smoking, Cancer, and Correlations 8
4.1 A not-so-great variation on di�erential privacy . 10

A The function ex 12

1

Acknowledgement. This book chapter is an extension from the course material jointly devel-
oped by Jonathan Ullman and Adam Smith. Please feel free to provide feedback.

1 De�ning “Privacy”

Having seen reconstruction attacks, we now want to get a handle on what it means that some set of
statistics are actually ok to release—that they don’t expose individuals’ data (too much?) to attacks
like the ones of the last two lectures. The question isn’t new. Researchers in statistics, computer
science, and information theory have been tackling variations on it since the 1960’s [War65], and a
many algorithms and techniques were developed that resist speci�c suites of attacks.

However, our goal will be to �nd a general criterion we can use to reason about many di�erent
kinds of released information, and about a broad class of attacks. In fact, what we really want
is a clear sense in which we’ve prevented “all reasonable” attacks. Di�erential privacy provides
one approach to this conundrum. Before we get to it, however, it is helpful to see an example of
something that does not meet our desiderata.

k-Anonymity [Swe02] is one popular approach to reasoning about the privacy implications
of publishing statistical tables. It applies only to speci�c kinds of information, called generalized
microdata. This means a table of individual records, where each entry is either the original record’s
entry (a speci�c person’s real age, for example) or a set of possible values for that entry (often an
interval, like 30–34). Figure 1 gives an example of such a table with age and zip code data. The
basic idea of k-anonymity is to divide attributes into ‘non-sensitive’ attributes—assumed to be
available to an attacker—and ‘sensitive’ ones—assumed to be unknown—and to ensure that every
record matches at least k − 1 others in the nonsensitive attributes. That is, given an integer k , a table
is k-anonymous if, when we delete the sensitive attributes and leave only the non-sensitive ones,
each row appears at least k times.1 The table of Figure 1 is 4-anonymous.

independent instances of themselves, but with arbitrary external
knowledge. We discuss both types of composition in this paper.
The dual problem to designing schemes with good composition

properties is the design of attacks that exploit independent releases.
We call these composition attacks. A simple example of such an
attack, in which two hospitals with overlapping patient populations
publish anonymized medical data, is presented below. Composition
attacks highlight a realistic and important class of vulnerabilities.
As privacy preserving data publishing becomes more commonly
deployed, it is increasingly difficult to keep track of all the organi-
zations that publish anonymized summaries involving a given indi-
vidual or entity. Schemes that are vulnerable to composition attacks
will be consequently difficult to use safely.

1.1 Contributions
Our contributions are summarized briefly in the abstract, above,

and discussed in more detail in the following subsections.

1.1.1 CompositionAttacks onPartition-based Schemes
We introduce composition attacks and study their effect on a

popular class of partitioning-based anonymization schemes. Very
roughly, computer scientists have worked on two broad classes of
anonymization techniques. Randomization-based schemes intro-
duce uncertainty either by randomly perturbing the raw data (a
technique called input perturbation, randomized response, e.g., [37,
2, 17]), or post-randomization, e.g., [35]), or by injecting random-
ness into the algorithm used to analyze the data (e.g., [6, 30]).
Partition-based schemes cluster the individuals in the database into
disjoint groups satisfying certain criteria (for example, in k-anony-
mity [33], each group must have size at least k). For each group,
certain exact statistics are calculated and published. Partition-based
schemes include k-anonymity [33] as well as several recent vari-
ants, e.g., [28, 39, 40, 25, 41, 29, 10, 23].
Because they release exact information, partition-based schemes

seem especially vulnerable to composition attacks. In the first part
of this paper we study a simple instance of a composition attack
called an intersection attack. We observe that the specific proper-
ties of current anonymization schemes make this attack possible,
and we evaluate its success empirically.
Example. Suppose two hospitals H1 and H2 in the same city re-
lease anonymized patient-discharge information. Because they are
in the same city, some patients may visit both hospitals with sim-
ilar ailments. Tables 1(a) and 1(b) represent (hypothetical) inde-
pendent k-anonymizations of the discharge data from H1 and H2

using k = 4 and k = 6, respectively. The sensitive attribute here
is the patient’s medical condition. It is left untouched. The other
attributes, deemed non-sensitive, are generalized (that is, replaced
with aggregate values), so that within each group of rows, the vec-
tors of non-sensitive attributes are identical. If Alice’s employer
knows that she is 28 years old, lives in zip code 13012 and re-
cently visited both hospitals, then he can attempt to locate her in
both anonymized tables. Alice matches four potential records in
H1’s data, and six potential records in H2’s. However, the only
disease that appears in both matching lists is AIDS, and so Alice’s
employer learns the reason for her visit.
Intersection Attacks. The above example relies on two proper-
ties of the partition-based anonymization schemes: (i) Exact sensi-
tive value disclosure: the “sensitive” value corresponding to each
member of the group is published exactly; and (ii) Locatability:
given any individual’s non-sensitive values (non-sensitive values
are exactly those that are assumed to be obtainable from other, pub-
lic information sources) one can locate the group in which individ-
ual has been put in. Based on these properties, an adversary can

Non-Sensitive Sensitive
Zip code Age Nationality Condition

1 130** <30 * AIDS
2 130** <30 * Heart Disease
3 130** <30 * Viral Infection
4 130** <30 * Viral Infection
5 130** ≥40 * Cancer
6 130** ≥40 * Heart Disease
7 130** ≥40 * Viral Infection
8 130** ≥40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

(a)
Non-Sensitive Sensitive

Zip code Age Nationality Condition
1 130** <35 * AIDS
2 130** <35 * Tuberculosis
3 130** <35 * Flu
4 130** <35 * Tuberculosis
5 130** <35 * Cancer
6 130** <35 * Cancer
7 130** ≥35 * Cancer
8 130** ≥35 * Cancer
9 130** ≥35 * Cancer
10 130** ≥35 * Tuberculosis
11 130** ≥35 * Viral Infection
12 130** ≥35 * Viral Infection

(b)

Table 1: A simple example of a composition attack. Tables (a) and (b) are 4-
anonymous (respectively, 6-anonymous) patient data from two hypothetical
hospitals. If an Alice’s employer knows that she is 28, lives in zip code
13012 and visits both hospitals, he learns that she has AIDS.

narrow down the set of possible sensitive values for an individual
by intersecting the sets of sensitive values present in his/her groups
from multiple anonymized releases.
Properties (i) and (ii) turn out to be widespread. The exact dis-

closure of sensitive value lists is a design feature common to all
the schemes based on k-anonymity: preserving the exact distribu-
tion of sensitive values is important, and so no recoding is usually
applied. Locatability is less universal, since it depends on the ex-
act choice of partitioning algorithm (used to form groups) and the
recoding applied to the non-sensitive attributes. However, some
schemes always satisfy locatability by virtue of their structure (e.g.,
schemes that recursively partition the data set along the lines of a
hierarchy that is subsequently used for generalization [23, 24], or
schemes that release the exact set of non-sensitive attribute vectors
for each group [39]). For other schemes, locatability is not perfect
but our experiments suggest that using simple heuristics one can
locate a individual’s group with high probability.
Even with these properties, it is difficult to come up with a theo-

retical model for intersection attacks because the partitioning tech-
niques generally create dependencies that are hard to model ana-
lytically. (If the sensitive values of the members of a group could
be assumed to be statistically independent of their non-sensitive
attribute values, then an analytic solution would be tractable; how-
ever, the assumption is does not fit the data we considered).

Experimental Results. Instead, we evaluated the success of in-
tersection attacks empirically. We ran the intersection attack on
two popular census databases anonymized using partition-based
schemes. We evaluated the severity of the attack by measuring the
number of individuals who had their sensitive value revealed. Our
experimental results confirm that partitioning-based anonymization
schemes including k-anonymity and its recent variants, !-diversity
and t-closeness, are indeed vulnerable to intersection attacks. Sec-
tion 3 elaborates our methodology and results.

Figure 1: A 4-anonymous table.

The idea behind this criterion is that it makes linkage attacks (like the Net�ix example from
Lecture 1 [NS08]) harder to carry out—if an attacker has access to another table that contains some
of the non-sensitive attributes, then each record in a k-anonymous table will match at least k of
the records in the other table.

While k-anonymity is likely to make those speci�c attacks harder than they would be with raw
data, a k-anonyous table can still leak lots of individual-level information. We can glean lots of

1Sweeney’s original notion [Swe02] was actually a bit more permissive: the condition did not have to hold simulta-
neously for all non-sensitive attributes, but only for those subsets of them, called quasi-identi�ers, that were likely to
apppear together in other tables. The simpler notion is good enough for our discussion.

2

information from the table in Figure 1: everyone in their 30’s has cancer; our friend Alice, who’s
data we happen to know is in the table, cannot have visited the hospital because of a broken leg; etc.
Of course, the example is simplistic (real hospital records don’t look like the example in the table...)
but it illustrates two important points: 1. Defending against one type of attack isn’t su�cient, and
2. Criteria that limit the form of the output (in this case, the number of occurrences of each vector
of non-sensitive attributes) do not necessarily constrain the information that is revealed.

Composition k-anonymity illustrates another important point, namely that when the same
record is included in two (or more) data sets that are anonymized separately, the combination of
the two might reveal far more than the two do individually [GKS08]. For example, consider the
table of Figure 2. Suppose we know that Alice’s record appears in both tables, and that she is 28
years old and lives in zip code 13012. Neither table on its own pins down her condition exactly
(each one narrows it down to a few posibilities), but taken together they pin it down exactly.

This problem is known as composition—what happens when many di�erent pieces of information
are revealed about me? We return to this question in the next lecture.

independent instances of themselves, but with arbitrary external
knowledge. We discuss both types of composition in this paper.
The dual problem to designing schemes with good composition

properties is the design of attacks that exploit independent releases.
We call these composition attacks. A simple example of such an
attack, in which two hospitals with overlapping patient populations
publish anonymized medical data, is presented below. Composition
attacks highlight a realistic and important class of vulnerabilities.
As privacy preserving data publishing becomes more commonly
deployed, it is increasingly difficult to keep track of all the organi-
zations that publish anonymized summaries involving a given indi-
vidual or entity. Schemes that are vulnerable to composition attacks
will be consequently difficult to use safely.

1.1 Contributions
Our contributions are summarized briefly in the abstract, above,

and discussed in more detail in the following subsections.

1.1.1 CompositionAttacks onPartition-based Schemes
We introduce composition attacks and study their effect on a

popular class of partitioning-based anonymization schemes. Very
roughly, computer scientists have worked on two broad classes of
anonymization techniques. Randomization-based schemes intro-
duce uncertainty either by randomly perturbing the raw data (a
technique called input perturbation, randomized response, e.g., [37,
2, 17]), or post-randomization, e.g., [35]), or by injecting random-
ness into the algorithm used to analyze the data (e.g., [6, 30]).
Partition-based schemes cluster the individuals in the database into
disjoint groups satisfying certain criteria (for example, in k-anony-
mity [33], each group must have size at least k). For each group,
certain exact statistics are calculated and published. Partition-based
schemes include k-anonymity [33] as well as several recent vari-
ants, e.g., [28, 39, 40, 25, 41, 29, 10, 23].
Because they release exact information, partition-based schemes

seem especially vulnerable to composition attacks. In the first part
of this paper we study a simple instance of a composition attack
called an intersection attack. We observe that the specific proper-
ties of current anonymization schemes make this attack possible,
and we evaluate its success empirically.
Example. Suppose two hospitals H1 and H2 in the same city re-
lease anonymized patient-discharge information. Because they are
in the same city, some patients may visit both hospitals with sim-
ilar ailments. Tables 1(a) and 1(b) represent (hypothetical) inde-
pendent k-anonymizations of the discharge data from H1 and H2

using k = 4 and k = 6, respectively. The sensitive attribute here
is the patient’s medical condition. It is left untouched. The other
attributes, deemed non-sensitive, are generalized (that is, replaced
with aggregate values), so that within each group of rows, the vec-
tors of non-sensitive attributes are identical. If Alice’s employer
knows that she is 28 years old, lives in zip code 13012 and re-
cently visited both hospitals, then he can attempt to locate her in
both anonymized tables. Alice matches four potential records in
H1’s data, and six potential records in H2’s. However, the only
disease that appears in both matching lists is AIDS, and so Alice’s
employer learns the reason for her visit.
Intersection Attacks. The above example relies on two proper-
ties of the partition-based anonymization schemes: (i) Exact sensi-
tive value disclosure: the “sensitive” value corresponding to each
member of the group is published exactly; and (ii) Locatability:
given any individual’s non-sensitive values (non-sensitive values
are exactly those that are assumed to be obtainable from other, pub-
lic information sources) one can locate the group in which individ-
ual has been put in. Based on these properties, an adversary can

Non-Sensitive Sensitive
Zip code Age Nationality Condition

1 130** <30 * AIDS
2 130** <30 * Heart Disease
3 130** <30 * Viral Infection
4 130** <30 * Viral Infection
5 130** ≥40 * Cancer
6 130** ≥40 * Heart Disease
7 130** ≥40 * Viral Infection
8 130** ≥40 * Viral Infection
9 130** 3* * Cancer
10 130** 3* * Cancer
11 130** 3* * Cancer
12 130** 3* * Cancer

(a)
Non-Sensitive Sensitive

Zip code Age Nationality Condition
1 130** <35 * AIDS
2 130** <35 * Tuberculosis
3 130** <35 * Flu
4 130** <35 * Tuberculosis
5 130** <35 * Cancer
6 130** <35 * Cancer
7 130** ≥35 * Cancer
8 130** ≥35 * Cancer
9 130** ≥35 * Cancer
10 130** ≥35 * Tuberculosis
11 130** ≥35 * Viral Infection
12 130** ≥35 * Viral Infection

(b)

Table 1: A simple example of a composition attack. Tables (a) and (b) are 4-
anonymous (respectively, 6-anonymous) patient data from two hypothetical
hospitals. If an Alice’s employer knows that she is 28, lives in zip code
13012 and visits both hospitals, he learns that she has AIDS.

narrow down the set of possible sensitive values for an individual
by intersecting the sets of sensitive values present in his/her groups
from multiple anonymized releases.
Properties (i) and (ii) turn out to be widespread. The exact dis-

closure of sensitive value lists is a design feature common to all
the schemes based on k-anonymity: preserving the exact distribu-
tion of sensitive values is important, and so no recoding is usually
applied. Locatability is less universal, since it depends on the ex-
act choice of partitioning algorithm (used to form groups) and the
recoding applied to the non-sensitive attributes. However, some
schemes always satisfy locatability by virtue of their structure (e.g.,
schemes that recursively partition the data set along the lines of a
hierarchy that is subsequently used for generalization [23, 24], or
schemes that release the exact set of non-sensitive attribute vectors
for each group [39]). For other schemes, locatability is not perfect
but our experiments suggest that using simple heuristics one can
locate a individual’s group with high probability.
Even with these properties, it is difficult to come up with a theo-

retical model for intersection attacks because the partitioning tech-
niques generally create dependencies that are hard to model ana-
lytically. (If the sensitive values of the members of a group could
be assumed to be statistically independent of their non-sensitive
attribute values, then an analytic solution would be tractable; how-
ever, the assumption is does not fit the data we considered).

Experimental Results. Instead, we evaluated the success of in-
tersection attacks empirically. We ran the intersection attack on
two popular census databases anonymized using partition-based
schemes. We evaluated the severity of the attack by measuring the
number of individuals who had their sensitive value revealed. Our
experimental results confirm that partitioning-based anonymization
schemes including k-anonymity and its recent variants, !-diversity
and t-closeness, are indeed vulnerable to intersection attacks. Sec-
tion 3 elaborates our methodology and results.

Figure 2: A 6-anonymous table.

Form versus process (or syntax versus semantics) Perhaps the most important lesson we can
draw from the examples above is that, to come up with a general approach to privacy of statistical
data, it isn’t enough to restrict the form of the outputs we generate. k-anonymity speci�es a set of
acceptable outputs, but doesn’t substantially restrict how they are produced.

2 A First Example: Randomized Response

Let’s recall the randomized reponse mechanism from Lecture 1. Suppose that our data set consists
of a single bit xi ∈ {0, 1} for each of n individuals. For each person, we’ll generate a biased random
bit Yi as follows. With probability 3/4, we set Yi = xi , and with the remaining probability of 1/4,
we set Yi to be the opposite value to xi (that iis, Yi = 1 − xi). The algorithm’s output is the list of
values (Y1, ...,Yn). Let RRbasic denote the resulting algorithm (spelled out in Algorithm 1).

What sort of privacy does RRbasic provide? There are many ways to answer the question, but
one way is to think of a sort of plausible deniability. For any individual i , seeing a particular value
of Yi in the output doesn’t give an outsider much information about whether xi = 0 or xi = 1. For

3

Algorithm 1 Randomized Response, RRbasic
Input: Data set of n bits: x = (x1,,xn) ∈ {0, 1}n
Output: Bits Y1, ...,Yn
For i = 1 to n

Yi =

{
xi w.p. 3/4
1 − xi w.p. 1/4

Return (Y1, ...,Yn)

any particular output yi , we have:
1
3 ≤
P (Yi = yi | xi = 1)
P (Yi = yi | xi = 0) ≤ 3 (1)

In other words, the outcome would have been roughly as likely if we had changed person i’s
record from one to 0 or vice-versa (assuming everyone else’s records were unchanged).

Proposition 2.1. There is a procedure that, given the outputs Y1, ...,Yn from randomized response on
input x1, ...,xn , returns an estiamte A such that√√√√

E
©­«
(
A −

n∑
i=1

xi

)2ª®¬ = O(
√
n) .

Exercise 2.2. Prove Proposition 2.1.

Now a factor of 3 maybe not be quite satisfactory. But we can get it to be arbitrarily close to 1
by changing the mechanism a bit. Suppose we want that odds ration to be bounded by eε for small
number ε > 0. (Recall that eε ≈ 1 + ε when ε is close to 0.) Algorithm 2 gives a version which takes
data in an arbitrary setU, along with a predicate φ that maps each record to a bit.

Algorithm 2 Randomized Response, RRε
Input: Data set of n bits: x = (x1,,xn) ∈ Un , predicate φ : U → {0, 1}, and a privacy
parameter ε > 0
Output: Bits Y1, ...,Yn
For i = 1 to n

Yi =

{
φ(xi) w.p. eε

eε+1
φ(1 − xi) w.p. 1

eε+1
Output: (Y1, ...,Yn)

Even though no particular φ(xi) can be learned with con�dence, when n is large we can use
the Yi ’s to estimate the proportion of records that satisfy φ.

Proposition 2.3. There is a procedure that, given the outputs Y1, ...,Yn from randomized response
(Alg. 2) on input x1, ...,xn , returns an estimate A such that√√√√

E
©­«
(
A −

n∑
i=1

φ(xi)

)2ª®¬ ≤ eε/2

eε − 1
√
n .

4

For bounded ε (say, less than 1), this bound is Θ
(√

n
ε

)
.

Exercise 2.4. Prove Proposition 2.3. (Hint: For which constants a,b do we have E (aYi − b) = xi?)

Exercise 2.5. Strengthen Proposition 2.3 as follows: show that there is a constant c > 0 such that,
for every t > 1, the probability that

��A −∑n
i=1 φ(xi)

�� ≥ t e
ε+1
eε−1
√
n is at most 2 exp(−ct2). (Hint: Write

A as a sum of independent random variables and apply a Cherno� bound.) (The exact form of the
function of ε isn’t really important here. Anything expression that scales as Θ

(1
ε

)
will do.

Exercise 2.6. It is typical to analyze a mechanism like randomized response in terms of how well
it does at estimating the average 1

n
∑n

i=1 φ(xi), instead of the sum (since if we add more data from
the same population, the average should stay more or less the same). We can use A

n (where A is the
estimate from Prop. 2.3) to estimate the average, and its standard deviation will Θ

(
1

ε
√
n

)
(for ε ≤ 1).

Suppose we want the standard deviation of this estimate to be at most α . For a privacy parameter
ε , how large a dataset n(α , ε) do we need? (Write an explicit function for n(α , ε), as well as a simple
asymptotic expression for the setting where ε ≤ 1). If we halve α , what will happen to n(α , ε)?
What if we halve ε when ε is small?

3 Di�erential Privacy

Let U be the set of all possible records for each individual. A dataset x is thus a multiset2 of
values in U. When the size n is �xed, we may think of it as a list x = (x1, ...,xn) ∈ Un . (It is
often conventient to view it as a histogram, that is, a functionU → N that counts the number of
occurrences of each possible record inU. We will return to this view later; for now, we’ll stick
with lists.)

A Thought Experiment The main idea of DP is to consider a thought experiment in which
we compare how an algorithm behaves on a data set x with the way it behaves on a hypothetical
dataset x′ in which one person’s record has been replaced with some other value.

We say two data sets are neighbors if they di�er in one individual’s record. A simple way to model
this is to think of the size n of data sets as �xed, and to consider two data sets adjacent if one record
has been replaced with a di�erent value. For example, if they di�er in index i , we would have:

x = (x1,x2,,xi−1, xi , xi+1, ...,xn)
x′ = (x1,x2,,xi−1, x ′i , xi+1, ...,xn)

Now consider a randomized algorithm A. For each possible input data set x, its output is a
random variable A(x). We say an algorithm is di�erentially private if running the algorithm on
two neighboring data sets yields roughly the same distribution on outcomes. Speci�cally, we’ll ask
that for every set E of possible outcomes—for example, those outputs from a healthcare study that
lead to individual i being denied health insurance—the probability of an outcome in E should be
the same under A(x) and A(x′), up to a small multplicative factor. In other words, the algorithm’s
outcomes should be about the same whether or not individual i ’s real data was used.

2A multiset is a set where we keep track of how many times each element appears.

5

-2.5 0 2.5 5 7.5 10

0.05

0.1

0.15

0.2

0.25

Figure 3: Two distributions P and Q that satisfy: for every event E, P(E) ≤ e1/4Q(E) and Q(E) ≤
e1/4P(E).

De�nition 3.1 (ε-DP with �xed-size data sets). A randomized algorithm A : Un → Y taking
inputs inUn is ε-di�erentially private for size n data sets if, for every pair of neighboring data sets
x, x′, for all events3 E ⊆ Y:

P (A(x) ∈ E) ≤ eε · P (A(x′) ∈ E) . (2)

The de�nition of DP uses the parameter ε to control how far apart the distributions of A(x) and
A(x′) can be. For example, Figure 3 depicts two distributions that satisfy the criterion of Equation (2)
with ε = 1/4. As ε gets smaller, the algorithm’s output distributions can vary less. When ε = 0, the
algorithm leaks nothing at all—its output distribution must be the same for all inputs.

In earlier sections, we pretty much already proved that randomized response (Alg. 2) is di�er-
entially private, without using that terminology. Let’s go through the argument again, �lling in the
missing pieces.

Proposition 3.2. RRε is ε-di�erentially private.

Proof. Fix two neighboring data sets x and x′, and let i be the position in which they di�er (so that
xi , x ′i but x j = x ′j for all j , i) . First, consider a particular outcome y = (y1, ...,yn). Because we
make selections independently for each i , we have

P (RRε (x) = y) = P (Y1 = y1 | x1) · P (Y2 = y2 | x2) · · · P (Yn = yn | xn) (3)

When we compare this to the probability that RRε (x′) = y, only one of the terms in the product
will change. We thus get that

P (RRε (x′) = y)
P (RRε (x) = y)

=
P

(
Yi = yi | x

′
i
)

P (Yi = yi | xi)
(4)

This ratio is at most eε
eε+1

/
1

eε+1 = eε .

3In this course, it is generally �ne to think of an event as any subset of the output set. In general, for uncountable
output sets like R, one restricts attention to a collection of “measurable” sets. Standard texts on probability discuss the
issue in detail.

6

Now let’s take any subset E ⊆ Y = {0, 1}n . The probability that RRε (x) lies in E is just the sum
over y ∈ E of the probability that RRε (x) = y. We thus get

P (RRε (x) ∈ E) =
∑
y∈E

P (RRε (x) = y)
Eq . (4)
≤

∑
y∈E

eε · P (RRε (x′) = y) = eε · P (RRε (x′) ∈ E) . (5)

This completes the proof. �

The proof that randomized response is di�erentially private uses a useful trick that is true quite
generally:

Exercise 3.3. Show that if the output space Y is discrete (so probabilities are just sums over
individual elements), then an algorithm A : Un → Y ε-DP if and only if for every particular
output a ∈ Y, we have P (A(x) = a) ≤ eεP (A(x′) = a) (that is, neighboring data sets lead to each
individual output with about the same probability). Similarly, if the distributions of A(x) and A(x′)
both have probability densities (on R, say), show that it su�ces to have fx(y) ≤ eε fx′(y) for all
possible outptus y, where fx(y) and fx′(y) are the two probability densities.

Exercise 3.4. (i) Suppose x and x′ are neighbors. Let A be a randomized algorithm that is ε-
di�erentially private for ε = ln(5/4) ≈ 0.223. Suppose A outputs real numbers, and suppose
P (A(x) ≥ 14) = 0.2. What range of values for P (A(x′) ≥ 14) is possible? (ii) How would the
answer change if you knew instead that P (A(x) ≥ 14) = 0.5? [Hint: Consider the constraints on
P (A(x) < 14) = 1 − P (A(x) ≥ 14).]

7

4 Interpreting DP: Smoking, Cancer, and Correlations

What does it mean to decide if a concept like di�erential privacy is a good de�nition of “privacy”?
There is no single answer, since it involves a connection between an unambiguous mathematical
concept and a nebulous social one. “Privacy” covers lots of di�erent concepts, many of which are
more about control than con�dentiality, and all of which are context-dependent.4 Nevertheless, we
can try to wrap our heads around the guarantee that a technical concept provides—perhaps we can
chip o� a piece of “privacy” which is accurately pinned down by DP.

How can we start? A good exercise is to write down an natural-language sentence that captures
the type of guarantee we would like. A strong requirement, reminiscent of what is possible for
encryption would be this:

A �rst attempt: No matter what they know ahead of time, the attacker’s beliefs
about Alice are the same after they see the output as they were before.

Unfortunately, such a strong guarantee is impossible to achieve if we actually want to release
useful information. To see why, consider the example of a clinical study that explores the relationship
between smoking and lung disease. A health insurance company with no a priori understanding
of that relationship might, after seeing the results of the study, dramatically alter its estimates
of di�erent people’s likelihood of disease. In turn, this would likely cause the company to raise
premiums for smokers and lower them for nonsmokers. The conclusions drawn by the company
about the riskiness of any one individual (say Alice) are strongly a�ected by the results of the study.
Their beliefs about Alice have de�nitely changed.

However, the change can hardly be called a breach of Alice’s privacy. It happens because the
study reveals a feature of human biology—exactly what we want clinical studies to do!

So what can we hope to achieve? One important observation about the smoking and lung
disease example is that the information about Alice would be learned by the insurance company
regardless of whether Alice participated in the study. In other words, the conclusions the insurance
company draws about Alice come from the totality of the data set, and don’t depend strongly on
her data. One way to understand di�erential privacy is that this is the only kind of inference about
individuals that it allows.

The DP principle: No matter what they know ahead of time, an attacker seeing the
output of a di�erentially private algorithm would draw (almost) the same conclusions
about Alice whether or not her data were used.

It is instructive to formalize this intuitive statement. What do we mean by “what the attacker
knows” and “what they learn”? We’ll adopt what statisticians call a Bayesian perspective, and
encode knowledge via probability distributions. Speci�cally, let’s think of the data set as a random
variable X distributed over Un . For clarity, we’ll use capital letters like X to refer to random
variables, and lower case symbols like x to refer to speci�c realizations.

We can the adversary’s background knowledge via a prior distribution p(x) = P (X = x). We
should think of this as how likely a given data set is to occur given everything the attacker knows

4A number of writers have dissected the concept, trying to provide their own taxonomy of privacy’s many facets.
Brandeis [?], Solove [?], and Nissenbaum [?] provide good places to start.

8

ahead of time. 5 Because we don’t know what other information the attacker has, we will want our
analysis to work for every prior distribution p.

Given the output a = A(X). We can model “what the adversary learns” by the posterior
distribution of the data conditioned on the algorithm’s output. That is,

p(x | a) def
= P (X = x | A(X) = a) =

P (A(x) = a) · p(x)∑
x̃∈Un P (A(x̃) = a) · p(x̃)

. (6)

But how should we model “what the attacker would have learned had person i’s data been
removed”? Given a data set x ∈ Un , let x−i denote the data set in which person i’s entry has been
replaced by a default value. Consider a hypothetical world in which the data set x−i is used instead
of the real data set x. Given an output a, we can now consider the conditional distribution p−i (· | a)
that the attacker would have constructed in the hypothetical world, namely:

p−i (x | a)
def
= P (X = x | A(X−i) = a) =

P (A(x−i) = a) · p(x)∑
x̃∈Un P (A(x̃−i) = a) · p(x̃)

. (7)

We can think of p−i (· | a) as encoding what the attacker would have learned about person i had
person i’s data never been used.

To formalize our claim about di�erential privacy, we’ll use the following shorthand. For two
distributions p and q on the same setY (technically, over the same σ -algebra of events), we’ll write

p ≈ε q ⇔ (∀ events E ⊆ Y : p(E) ≤ eεq(E) and q(E) ≤ eεp(E)) . (8)

Given two random variables A and B distributed over the same set, we’ll sometimes abuse notation
and write A ≈ε B to mean that the relation in (8) is satis�ed by their distributions. With this
notation, an algorithm A is ε-DP if and only if, for every pair of neighboring data sets x and x′, we
have A(x) ≈ε A(x′).

Theorem 4.1. Let A : Un → Y be ε-di�erentially private. For every distribution on X (possibly with
dependencies among the entries), for every output a ∈ Y, for every index i , we have

p−i (· | a) ≈2ε p(· | a) . (9)

Exercise 4.2. Prove Theorem 4.1. Hint: Fix an output a ∈ Y. Given a data set x ∈ Un , how can
you write the ratio p−i (x |a)

p(x |a) in terms of the ratios of the form P (A(x−i)=a)
P (A(x)=a) ?

Something here might seem weird: how can the attacker learn about i’s data from a if xi was
not used to compute a? The answer is in the dependencies among the data records—the attacker
can learn about x−i , which itself reveals information about xi .

Returning to the smoking and lung disease example: Suppose the records in X are drawn
i.i.d. from one of several possible distributions. For simplicity, imagine there are two possible
distributions, one where the features are independent, and one where they are strongly correlated,

5Our use of probability to model knowledge this way corresponds to the subjective interpretation of probability (see,
e.g., [Háj19]). It’s pretty di�erent from the way we use probability in the de�nition of a randomized algorithm, or in the
de�nition of di�erential privacy. In those contexts, the probabilities re�ect a process we control, and it’s reasonable
to think of them as known exactly. In contrast, we cannot expect to know an attacker’s prior. Here, we posit only
that it exists. Even this postulate is delicate, especially since real attackers are computationally bounded. We ignore
computational restrictions here for simplicity.

9

so that the prior on X is a mixture of the two. Seeing the clinical study’s results basically causes
the insurance company’s posterior to collapse to the i.i.d. distribution in which the features
are correlated. Whether the study used Alice’s data or not, the insurance company’s posterior
distribution on Alice’s record would have the features correlated.

What have we learned? We can model knowledge via probabilities, and learning via the change
from prior to posterior distributions. When we do that, we can make our intuition precise—-
that di�erentially private mechanisms reveal only information that could be learned without any
particular person’s data.

We’ve also found a useful natural language formulation of our goal when thinking about
con�dentiality of individuals’ data when releasing aggregate statistics. That type of formulation is
particularly useful since it can guide our intuition for the technical concepts. It can also help us
articulate goals in legal and policy discussions.

4.1 A not-so-great variation on di�erential privacy

The formulation of Theorem 4.1 also helps us distinguish among similar de�nitions of privacy.
Suppose we were to require that probabilities di�er by an additve error term rather than a

multiplicative one. We might say that a randomized algorithm satis�es “δ -additive secrecy” if

∀x, x′ ∈ Un neighbors , ∀ events E : P (A(x) ∈ E) ≤ P (A(x′) ∈ E) + δ . (10)

How di�erent is this from di�erential privacy? It certainly has things in common: for example,
it is closed under composition and postprocessing, and satis�es a similar version of group privacy.
In particular, we must have δ > 1/n to get useful information out of such an algorithm. However,
it does not satisfy a reasonable analogue to Theorem 3.1, and it does allow some algorithms that are
pretty obviously disclosive.

Exercise 4.3 (Name and Shame Mechanism). Consider the following mechanism NSδ . On input
x = (x1, ...,xn), for each i from 1 to n, it generates

Yi =

{
(i,xi) w. prob. δ ,
⊥ w. prob. 1 − δ .

(11)

Here ⊥ is just a special symbol meaning “no information”.
(i) Show that NSδ satis�es “δ -additive secrecy”. (ii) Show that for δ � 1/n, the mechanism

publishes some individuals’ data in the clear with high probability, and that for such outputs, Eq. (9)
in Theorem 4.1 does not hold.

Summary

Key Points

• Di�erentially private algorithms can be assembled modularly, or run independently by
di�erent organizations. The privacy parameter accumulates at most additively across all
executions that use the same person’s record.

• We can view the privacy parameter as a budget to be divided among di�erent e�orts.

10

• For some algorithms, one gets a much better analysis by considering the steps jointly, rather
than using composition. (Exercise ??)

• Algorithms that access their data using summation queries can often be made di�erentially
private without too much loss of accuracy. We saw the example of Lloyd’s algorithm.

• Useful statistical summaries may have to reveal information about an individual to an attacker.
However, we can make a more subtle claim: No matter what they know ahead of time, an
attacker seeing the output of a di�erentially private algorithm would draw (almost) the same
conclusions about Alice whether or not her data were used.

Additional Reading and Watching

• More on the formulation of Theorem 4.1: [KS14]
– MinutePhysics’ Youtube video “When It’s OK to Violate Privacy”, 2019.

• A thorough proof of the impossibility of the “�rst attempt” privacy guarantee: [DN10] (see
also [KM11]).

• Why noisy sums can be used to �nd useful approximations to many natural procedures:
[Kea93, BDMN05, DMNS16].

References

[BDMN05] Avrim Blum, Cynthia Dwork, Frank McSherry, and Kobbi Nissim. Practical privacy:
the SuLQ framework. In Proceedings of the 24th Annual ACM Symposium on Principles
of Database Systems, PODS ’05, 2005. ACM.

[DMNS16] Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to
sensitivity in private data analysis. Journal of Privacy and Con�dentiality, 7(3), 2016.

[DN10] Cynthia Dwork and Moni Naor. On the di�culties of disclosure prevention, or the
case for di�erential privacy. Journal of Privacy and Con�dentiality, 2(1), 2010.

[GKS08] Srivatsava Ranjit Ganta, Shiva Prasad Kasiviswanathan, and Adam Smith. Composition
attacks and auxiliary information in data privacy. In Proceedings of the 14th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’08,
2008. ACM.

[Háj19] Alan Hájek. Interpretations of Probability. In Edward N. Zalta, editor, The Stanford
Encyclopedia of Philosophy. Metaphysics Research Lab, Stanford University, fall 2019
edition, 2019.

[Kea93] Michael J. Kearns. E�cient noise-tolerant learning from statistical queries. In ACM
Symposium on Theory of Computing. ACM, 1993.

[KM11] Daniel Kifer and Ashwin Machanavajjhala. No Free Lunch in Data Privacy. In SIGMOD,
2011.

[KS14] Shiva Prasad Kasiviswanathan and Adam D. Smith. On the ‘semantics’ of di�erential
privacy: A bayesian formulation. Journal of Privacy and Con�dentiality, 2014.

11

https://www.youtube.com/watch?v=FE9ko2wtyeQ

0 0.25 0.5 0.75 1

0.4

0.8

1.2

1.6

2

2.4

2.8

Figure 4: The function ex (solid blue), seen here bounded below by 1+x (green dashed) and bounded
above on [0, 1] by 1 + x + x2 (purple dashed) and 1 + 2x (red dashed).

[NS08] Arvind Narayanan and Vitaly Shmatikov. Robust de-anonymization of large sparse
datasets. In IEEE Symposium on Security and Privacy, 2008.

[Swe02] Latanya Sweeney. k-anonymity: A model for protecting privacy. International Journal
of Uncertainty, Fuzziness and Knowledge-Based Systems, 10(5):557–570, 2002.

[War65] Stanley L. Warner. Randomized response: A survey technique for eliminating evasive
answer bias. Journal of the American Statistical Association, 60(309):63–69, 1965.

Appendix

A The function ex

We’ll be working with the quantity ex (often eε for DP algorithms) a lot. Here a few useful
inequalities:

• For all x ∈ R, we have ex > 1 + x (and thus e−x ≥ 1 − x).
• As x → 0 (either positive or negative), we have ex = 1 + x + Θ(x2). As a consequence, we

have:
◦ x ≥ 1 − e−x ≥ x −O(x2),
◦ 1

x ≥
1

ex−1 ≥
1
x −O(x

2), and
◦ 1

x ≤
1

1−e−x ≤
1
x +O(x

2).
You can double check the direction of inequalities and a sense of speci�c constants by using a

graphing app. For example, Figure 4 shows that 1 + x ≤ ex ≤ 1 + x + x2 ≤ 1 + 2x for x ∈ [0, 1].

12

