
1 Gradient Descent

An important family of optimization algorithms are based on gradient descent. The idea is to
iteratively improve a candidate solution w by taking a small step in the direction of opposite to the
gradient at w .

When the loss L is di�eretiable at w , the gradient ∇L(w) gives the coe�cients of the best linear
approximation to L in the area right around w . Moving in the direction opposite to the gradient is
thus the same as moving in the direction in which the function drops most steeply. If we think of the
graph of the function as a surface, then the gradient tells us which direction a drop of water would
trickle in if it were placed at the point corresponding to w . Water �nds minima of a landsacpe, and
so can gradient descent.

Of course, gradient descent methods can get stuck in local minima. These are points where the
function cannot be decreased by taking small steps. A global minimum, in contrast, is an input
where the function takes its smallest possible value. On the surface of the earth, lakes and ponds
occur at local minima; the global minimum is the bottom of the Mariana Trench.

Even though gradient descent won’t always work, we can prove that it converges—and get a
very good handle on how quickly—if we focus on convex functions.

There are many variations on gradient descent and its analysis. We will see on variant, called
projected gradient descent (Algorithm 1), which aims to minimize a loss L on a set C. For simplicity,
we will assume that C is a convex set for which projection—that is, �nding the nearest point in C—is
computationally easy. For example, if C is a d-dimensional `2 ball, or a d-dimensional hypercube
[−1,+1]d , then projection is simple.
Algorithm 1: Projected Gradient Descent(L,C,η)
Input: Set C ⊆ Rd for which the projection ΠC is easy to compute. Loss function

L : C → R to be minimized. Learning rate η > 0.
1 w0 ← arbitrary point in C ;
2 for t = 1, 2, ...,T do
3 дt ← ∇L(wt−1) (if f not di�erentiable, any valid subgradient дt ∈ ∂L(wt−1) will do);
4 ut ← wt−1 − ηдt ;
5 wt ← ΠC(ut) (the nearest point in C to ut) ;
6 return ŵ = 1

T
∑T−1

t=0 wt ;

Running Time As written, PGD requires us to compute the gradient of all n individual losses
for each time stepT , and then to performT summations of n vectors in Rd , for a total running time
of O(nT (d + Time(∇`)), where Time(∇`) is the time of a gradient computation.

Convergence? Gradient descent will not always converge to a global minimizer. However, when
the loss L is convex, then we can actually prove convergence.

1.1 Gradient Descent with Random Estimates

Gradient descent is remarkably robust to variation. One of its notable properties is that in most
settings, it continues to work even when all we can get at each step is an estimate д̃t of the true

1

gradient дt = ∇L(wt−1). When the loss L we seek to minimize is decomposable, meaning that

L(w) = L(w ; x) = 1
n

n∑
i=1
`(w ;xi)

it’s natural to get noisy estimates for a few reasons:

Privacy: Noisy Gradient Descent A simple way to make PGD di�erentially private is to add
i.i.d. Gaussian noise to the gradient estimates obtained at each step, e.g.,

д̃t = дt + N (0,σ 2Id)

The expectation of д̃t is always дt .

E�ciency: Stochastic Gradient Descent Rather than evaluating the full gradient of L at each
step of the algorithm we can save a factor of n in the running time by evaluating the gradient
at a single, randomly chosen point. For each t ,

д̃t = `(wt−1;xi) for i ∼ Uniform({1, ...,n})

Again, the expectation of д̃t is exactly дt , since

E (д̃t) =
1
n

∑
i

∇w`(wt−1;xi) =︸ ︷︷ ︸
by linearity of ∇

∇w

(
1
n

∑
i

`(wt−1;xi)
)
= ∇L(wt−1) .

A useful variation on this idea is batch gradient descent, in which we select more than one
random record at each step to estimate the gradient. This essentially trades o� running time
against variance.

1.2 Private Gradient Descent

Let’s look at the �rst version of the idea above, encapsulated in Algorithm 2, Noisy PGD.
Algorithm 2: Noisy Projected Gradient Descent(L,C,η,σ)
Input: σ > 0 is a noise parameter. The other inputs are the same as in Algorithm 1.
Di�erences from Alg. 1 are in red.

1 w0 ← arbitrary point in C ;
2 for t = 1, 2, ...,T do
3 дt ← ∇L(wt−1) (if f not di�erentiable, any valid subgradient дt ∈ ∂L(wt−1) will do);
4 д̃t ← дt + N (0,σ 2Id) ;
5 ut ← wt−1 − ηд̃t ;
6 wt ← ΠC(ut) (the nearest point in C to ut) ;
7 return ŵ = 1

T
∑T−1

t=0 wt ;
To see that Noisy PGD is di�erentially private, observe that if all the intermediate values wt

were released, it would be an application of adaptive Gaussian Mechanism. When the individual
losses ` are Lipschitz, the senstivity of each query is bounded. What is actually released is less than
all of the iterates, but by postprocessing we know this won’t a�ect privacy.

2

Lemma1.1. If the individual losses ` areG-Lipschitz, then Noisy PGD is (ε,δ)-DP forσ ≥
2G

√
2T ln(1/δ)
nε

.

Proof. NoisyPGD is an instance of the Gaussian noise with adaptively selected queries. The
adaptivity comes in because the query point wt depends on the noisy graidents from previous
steps.

Recall that, by the linearity of the gradient, ∇L(w) can be written as the average of individual
loss gradients ∇`(w ;xi). It therefore has `2 sensitivity at most 2G/n. To analyze the mechanism as
a whole, we can apply Strong Composition or, better yet, the tighter bound for Gaussian noise from
the Lecture 10 In-class Exercises. That latter bound shows that even in the adaptive setting, what
matters is the overall `2 sensitivity of the collection of queries. In our case the overall sensitivity
is
√
T · 2G

n . It is enough for standard deviation σ to exceed this sensitivity by
√

2 ln(1/δ)
ε for the

mechanism to be private; this completes the proof. Note: Applying generic Strong Composition
Lemma would yield a slightly weaker bound with an extra factor of

√
ln(1/δ), but wouldn’t change

the qualitative �avor of the result. �

Running Time As written, noisy PGD requires us to compute the gradient of all n individual
losses for each time stepT , and then to performT summations of n vectors in Rd , for a total running
time of O(nT (d + Time(∇`)), where Time(∇`) is the time of a gradient computation.

1.3 Stochastic Gradient Descent and Ampli�cation by Subsampling

We can improve the run time of gradient descent dramatically if we use the second idea above
for estimating the gradient, namely we sample only one record at each step and use its gradient
as a proxy for the gradient of L. Remarkably, for convex loss functions the convergence rate is
essentially the same with the proxy as it is with the full gradient!

We can combine the two ideas to obtain a faster di�erentially private algorithm known as
DP-SGD. Speci�cally, at each step we set

д̃t ← ∇`(wt−1;xit) + N (0,σ 2Id) for it ∼ Uniform({1, ...,n}) . (1)

Analyzing the privacy of this algorithm is trickier than in the case of the full gradient. If we
released all the intermediate iterates as well as the indices it that we used to estimate gradients,
we would have an instance of the Gaussian mechanism. But the sensitivity of the gradient at each
step would be n times higher than in the previous algorithm—it would be 2G instead of 2G/n. We
would have to add far more noise for the same privacy level!

We’d like to somehow take advantage of the fact that the sample it we use to estimate the
gradient in (1) is secret. We can do this! In fact, every di�erentially private algorithm has a much
lower privacy parameter ε when it is run on a secret sample than when it is run on a sample whose
identities are known to the attacker. This phenomenon is known as ampli�cation by subsampling.

Roughly speaking, the privacy parameter gets reduced by a factor of 1/n when we run the
algorithm on a random data entry from a data set x. Let’s try to state the result precisely. Given a
data set x ∈ Un and a set of indicies S ⊆ [n], let x|S denote the data set obtained by keeping only
entries xi for i ∈ S .

3

Lemma 1.2 (Ampli�cation by Subsampling). Letm,n be integers withm ≤ n. LetA be any algorithm
taking inputs inUm , and de�ne A′ onUn as follows:

On input x,A′(x) selects a uniformly random set S of sizem from [n] (without replacement),
and returns A(x|S).

If A is (ε,δ)-di�erentially private, then A′ is (ε ′,δ ′)-di�erentially private for ε ′ = ln
(
1 + (eε − 1) · mn

)
and δ ′ = δ · mn .

When the original algorithm satis�es ε ≤ 1, the lemma shows that the new algorithm has
privacy parameter ε ′ ≈ ε · mn . For example, if we start from a (1,δ)-di�erentially private algorithm,
then we can get an (ε ′, ε ′δ)-DP algorithm by running the original one on a subsample of roughly ε ′
times the size of the original.

Exercise 1.3. Suppose a national statistical agency samples 0.001% of its country’s population in a
survey. It runs a (0.5,0)-DP algorithm on the results and publishes them. Assuming that the list
of survey participants is not made public, for which ε ′ is the resulting process (ε ′, 0)-DP? How
does the interpretation change if we know that a particular person of interest did participate in the
survey?

Exercise 1.4. Prove Lemma 1.2. A good place to start is to set δ = 0, and aim to prove a bound of
the form ε ′ = O(ε · mn) for ε ≤ 1.

[Hint: Suppose data sets x and x′ di�er only in position i . Break up the probability of event E
into E ∩ F and E ∩ F̄ , where F is the event that i ∈ S . The probability of F is exactly m

n under both
x and x′. Furthermore, P (E | F , x) ≤ eεP (E | F , x′) and P (E | F , x) ≤ eεP

(
E | F̄ , x

)
.]

How does this helps us analyze DP-SGD? For a given level of noise σ , we can proceed in two
steps:

1. use ampli�cation by subsampling to show that each step of the DP-SGD algorithm satis�es
roughly the same privacy guarantee as it would have without subsampling, at least when the
noise is fairly large.

2. We can then use strong composition to analyze the entire sequence.

For example, suppose we set σ = 2G ln(1δ)
ε , so that adding noise to a single gradient ∇`(w ;xi)

whose index i is known is (ε,δ)-DP for some ε ≤ 1. The ampli�cation by subsampling lemma shows
that this step is DP with ε ′ ≈ ε/n. Strong composition then allows one to repeat this basic step
T times with a blow-up of about

√
T in the privacy parameter, resulting in a �nal guarantee of

ε ′′ ≈ ε
√
T /n. One can thus execute the algorithm for as many as T = n2 steps and get an overall

privacy guarantee of about ε .
We won’t work out an exact statement here, for two reasons. First, the parameters one gets

by taking this route are somewhat messy. Second, there are other, more involved techniques
for analyzing the privacy cost of DP-SGD that are substantially tighter. However, their rough
interpretation is fairly simple:

In many parameter regimes, DP-SGD has approximately the same privacy
cost and accuracy as Noisy PGD, at approximately 1/n fraction of the run
time.

4

2 Analyzing Gradient Descent and Its Variants

We can analyze convergence when the set C and loss function L are convex.

Theorem 2.1. Let L : C → R be G-Lipschitz and convex. Suppose C is closed and convex and has
diameter R. Letw∗ ∈ arg minw ∈C L(w) be a minimizer of L on C. If we set η = R

G
√
T
, then

L(ŵ) ≤ L(w∗) +
RG
√
T
.

To prove this, we’ll need a basic fact about projections onto convex sets.

Lemma 2.2. Let C ⊆ Rd be a closed, nonempty convex set. Let ΠC(x) be the nearest point in C to x .
For every x , ΠC(x) is closer than x to every point in C. That is, for every x ∈ Rd and y ∈ C,

‖ΠC(x) − y‖ ≤ ‖x − y‖ .

Proof. If x ∈ C, the two distances are equal. If x < C, then consider the angle formed by the line
segments from ΠC(x) to x and ΠC(x) to y.

𝐶

Π%(𝑥)

𝑥

𝑦

If the angle is 90◦ or greater, then the statement is correct since the segment xy—the oppposite side
of the triangle—is longer than both the other two sides. But the convexity of C means the angle
cannot be less than 90◦. If it were, we would get a contradiction: we could slide ΠC(x) towards y
and reduce the distance from ΠC(x) to x ; this move would not leave the set C, so ΠC(x) would not
be nearest point in C to x . �

Exercise 2.3. Write down an algorithm to compute the projection onto the following convex sets
in Rd : (a) the `2 ball of radius 1, (b) the cube [−1, 1]d , and (c) the `1 ball

{
x ∈ Rd :

∑
i |x(i)| ≤ 1

}
.

We can now prove our main convergence result.

Proof of Theorem 2.1 . The basic idea of the gradient descent analysis is look at how two key
quantities evolve as the algorithm progresses:

• Excess Risk: L(wt) − L(w
∗)

• Squared distance to minimizer: ‖wt −w
∗‖2

These two quantities are intertwined. Speci�cally, we’ll show that if the excess risk at stage t is
large, then the distance to the minimizer will decrease signi�cantly in the next step of the algorithm.
Since the distance from the minimizer is at most R to begin with, there won’t be too many steps
during which the excess risk becomes small.

Claim 2.4. For each t ∈ {0, ...,T − 1},

L(wt) − L(w
∗) ≤

η‖дt ‖
2

2 +
1
2η

(
‖wt −w

∗‖22 − ‖wt+1 −w
∗‖22

)
(2)

5

Proof. For each iterate wt , the fact that дt+1 ∈ ∂L(wt) tells us that L(w∗) ≥ L(wt) + 〈дt ,w
∗ −wt 〉 .

Rearranging, we get
L(wt) − L(w

∗) ≤
1
η

〈
ηдt ,wt −w

∗
〉
. (3)

How can we relate this to the change in the squared distance? Consider the triangle formed by w∗,
wt and the unprojected update ut+1.

𝐶

𝑤"
𝑤"#$

𝑢"#$

−𝜂
𝑔 "#$

𝑤∗

Recall that for any two vectors a,b, we have 〈a,b〉 = 1
2
(
‖a‖2 + ‖b‖2 − ‖b − a‖2

)
. Applying this to

(3):

L(wt) − L(w
∗) ≤

1
2η

(
‖ηдt ‖

2 + ‖wt −w
∗‖2 − ‖wt −w

∗ − ηдt︸ ︷︷ ︸
ut+1−w∗

‖2
)

(4)

≤
η‖дt ‖

2

2 +
1
2η

(
‖wt −w

∗‖2 − ‖ut+1 −w
∗‖2

)
(5)

≤
η‖дt ‖

2

2 +
1
2η

(
‖wt −w

∗‖2 − ‖wt+1 −w
∗‖2

)
(6)

For the last step, we used the fact that projectingut+1 onto C only brings it closer tow∗ (Lemma 2.2).
�

We can now use the Claim to prove our main result. Because L is convex, the loss at ŵ = 1
T

∑
t wt

is at most the average of the losses of the intermediate iterates:

L(ŵ) ≤
1
T

T−1∑
t=0

L(wt)

This last fact follows from Jensen’s Inequality (see exercises from Lecture 11). We can bound the
excess risk by averaging the excess risk at all times t . Applying the Claim,

L(ŵ) − L(w∗) ≤
η

2 max
t
‖дt ‖

2 +
1

2ηT

T−1∑
t=0

(
‖wt −w

∗‖2 − ‖wt+1 −w
∗‖2

)
. (7)

Now the sum of the decreases in the squared distance is exactly ‖w0 −w
∗‖2 − ‖wT+1 −w

∗‖2, which
is at most R2. The function is G-Lipschitz, so ‖дt ‖ ≤ G. Thus,

L(ŵ) − L(w∗) ≤
ηG2

2 +
R2

2ηT (8)

Setting η = R
G
√
T

gives us the desired bound. �

6

There we go! We now have an algorithm to optimize a convex function on a convex set as long
as we can compute gradients of the function, and also project onto the set.

It’s worth pausing to see what assumptions we used to prove that Projected Gradient Descent
works. We used that L is convex in two places. First, and most importantly, we used it to get a
lower bound on the excess risk in terms of the gradient at wt (3). We also used it to connect the
loss at ŵ to the average of the losses along the path we took, but that step isn’t crucial—we could
just have easily output the best of iterates we saw by computing L at each step. We also use that C
was convex to argue that the projection step did not mess things up.

Even when functions and constraint sets are not actually convex, gradient descent will still
work as long as the conditions that help it improve hold at enough of the points along its trajectory.
Thus, as we develop di�erentially private versions of the algorithm, we’ll aim to get an algorithm
that makes sense to run on any function, even if we will only prove convergence when the function
is convex.

Exercise 2.5. Over the course of gradient descent, will the distance ‖wt −w
∗‖2 always decrease?

Either prove the statement, or give a counterexample.

2.1 Analyzing GD with estimates

The analysis technique of the previous section is remarkably robust to variations. In particular, it
will aloow us to analyze the expected excess risk of NoisyPGD (and DP-SGD). In particular, we can
derive the following main result:

Theorem 2.6. Let L : C → R be G-Lipschitz and convex. Suppose C is closed and convex and has
diameter R. Letw∗ ∈ arg minw ∈C L(w) be a minimizer of L on C.

Running Noisy PGD (Algorithm 2) with σ as in Lemma 1.1 for T = ε2n2

d time steps using η =
1
T ·

Rεn
G
√
d ln(1/δ)

leads to expected excess risk

E (L(ŵ)) − min
w ∈C

L(w) = O

(
RG

√
d ln(1/δ)
εn

)
.

Compare this to the bound for the exponential mechanism algorithm from last lecture. We’ve
replaced the d term with the familiar

√
d ln(1/δ)—the same sort of change we saw when switching

from Laplace noise to Gaussian noise for answering statistical queries. However, we see another
big change: we now have an algorithm that runs in reasonable time on any kind of input. While
we only analyze its convergence here for convex functions, the analysis gives us some con�dence
that the algorithm will perform well on “well-behaved” nonconvex functions. In particular, its
variations are currently the state of the art for training deep neural networks.

To understand why Noisy PGD and DP-SGD do well, it actually helps to analyze the slightly
more general setting of PGD with some abstract estimate д̃t . Let’s call the abstract algorithm “PGD
with Estimates”. Suppose that each each step of PGD with Estimates we obtain an estimate д̃t that
is

• Unbiased: for every w0,w1, ...,wt−1, E (д̃t) = дt = ∇L(wt−1)

• Low variance: for every w0,w1, ...,wt−1, E
(
‖д̃t ‖

2) is bounded.

7

Lemma 2.7. Let L : C → R be G-Lipschitz and convex. Suppose C is closed and convex and has
diameter R. Let w∗ ∈ arg minw ∈C L(w) be a minimizer of L on C. Then the output ŵ of PGD with
Gradient Estimates satis�es

E (L(ŵ)) ≤ L(w∗) +
η

2 max
t
E

(
‖д̃t ‖

2) + R2

2Tη .

The expectation is taken over the random choices made by the algorithm in estimating the gradients.

Proof. The proof follows more or less directly in the footprints of Theorem 2.1. The main idea is to
take expectations on both sides of the inequality in Claim 2.4. For every t ∈ {1, ...,T },

E (L(wt) − L(w
∗)) ≤

η

2E
(
‖д̃t ‖

2) + 1
2ηE

(
‖wt −w

∗‖22 − ‖wt+1 −w
∗‖22

)
(9)

Averaging over the iterates, we can gain apply Jensen’s inequality to get L(ŵ) = 1
T

∑
t L(wt). Taking

expectations, we get

E (L(ŵ) − L(w∗)) ≤
1
T

∑
t

E (L(wt) − L(w
∗)) (10)

≤
η

2

(
1
T

∑
t

E
(
‖д̃t ‖

2)) + 1
2Tη

(
‖w0 −w

∗‖2 − E
(
‖wT+1 −w

∗‖2
))

(11)

≤
η

2 max
t
E

(
‖д̃t ‖

2) + R2

2Tη (12)

This completes the proof of the lemma. �

We can apply this lemma to analyze Noisy PGD. The main thing we need is a bound on E (‖д̃t ‖2).
The squared `2 norm is a sum of the squares of the entries. By linearity of expectation, it su�ces
to see how adding Gaussian noise increases the expected square of each entry. Because the noise
has zero mean, it increases the expected square by exactly σ 2 per entry (since E

(
(д + Z)2

)
=

д2 + E
(
Z 2) + 2дE (Z)). Thus,

E (‖д̃t ‖2) = ‖∇L(wt−1)‖
2 + dσ 2 ≤ G2 + dσ 2 . (13)

To get privacy, we set σ 2 ≈ G2T ln(1/δ)
(εn)2 . Thus, Lemma 2.7 gives un an excess risk bound of

(dropping constant factors)
R2

Tη
+ ηG2

(
1 + ln(1/δ)

(εn)2
Td

)
.

Plugging in T and η as in Theorem 2.6 completes the proof of the theorem.

Acknowledgement This lecture note is taken from the course material by Adam Smith and
Jonathan Ullman.

8

