
1 Optimization for Fitting Models

For many natural problems in machine learning and statistics, the output we desire can phrased as
minimizing some loss function de�ned by the data set. For example, the mean of a set x of numbers
x1, ...,xn ∈ R is the number µ that minimizes the sum of the squares1 of the di�erences between µ
and the xi ’s:

µ(x) = argmin
w ∈R

L(w ; x) where L(w ; x) = 1
n

n∑
i=1
(w − xi )

2 .

The notation “argminw ∈W L(w)” denotes a minimizer of the function L in the setW, if a minimizer
exists. If there is no minimizer, such as in the expression “argminw ∈Rw” or “argminw ∈(0,1) ln(w)”,
then the notation is not de�ned.

Similarly, one way to de�ne the median is as a minimizer of the function L(w ; x) = 1
n
∑n

i=1 |w −
xi |. This view of the median comes up in the exponential-mechanism algorithm for the median
developed in Homework 2.

In classical problem of ordinary least squares linear regression, each data point is a pair (xi ,yi )
where xi ∈ R

d and yi ∈ R. Our goal is to �nd a a vector w in Rd such that 〈w,xi 〉 ≈ yi for all i ,
where 〈w,x〉 denotes the inner product 〈w,d〉 =

∑d
j=1w(j) · x(j). Speci�cally, we seek to minimize

L(w ; x) = 1
n

n∑
i=1
(〈w,xi 〉 − yi )

2 .

Empirical RiskMinimization (ERM) for Decomposable Losses These examples �t a general
framework: there is a loss function L(w ; x) which takes a parameter vector w and a dataset x ∈ Un .
Many loss functions arising in statistics and ML are decomposable, meaning they can be written as
a sum of terms, where each term depends on at most one of the xi ’s, as follows:

L(w ; x) = 1
n

n∑
i=1
`(w ;xi )︸  ︷︷  ︸
“individual

losses”

+ Λ(w)︸︷︷︸
“regularizer”

. (1)

The terms in the sum are called individual losses and the last term R(w), which depends only on w
but not the data, is called the regularizer.

In general, suppose we are given a loss function ` and a feasible set C ⊆ Rd of acceptable
parameters w . For example, we might need the entries of w to be nonegative, or we might insist on
a solution with norm ‖w ‖ ≤ 1. The problem of minimizing L(w ; x) on C is called empirical risk
minimization. Given an output ŵ , we measure success by the “excess risk”,

Excess empirical risk at ŵ : L(ŵ) −minw ∈C L(w ; x) (2)
1To see why the mean really minimizes sum of squared distances, notice that the derivative of L with respect to w is

L′(w) =
∑n
i=1 2(w − xi ) = 2(nw −

∑n
i=1 xi ). This last expression is 0 exactly when w is the mean. Since L is di�erentiable

everywhere and increases when w tends to either −∞ or +∞, the value where the derivative is 0 is the unique minimizer
of L.
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Population Risk We will focus hereon empirical risk, but it often makes sense to also analyze the
population risk, or “generalization” of a solution. Suppose the data as drawn from some unknown
population, modeled by a distribution P . In that case, we may also consider how well our solution
ŵ does with respect to unseen data drawn from the same distribution.

Population loss: L(w ; P) def
= E

x∼P
(L(w ; x)). (3)

Excess population risk at ŵ : L(ŵ ; P) −minw ∈C L(ŵ ; P) (4)

We will return to population risk and generalization later in the course.

Further Examples In a support vector machine (SVM), the data are pairs (xi ,yi ) ∈ Rd × {−1, 1}
and we aim to minimize

L(w ; x) = 1
n

n∑
i=1
(1 − yi 〈w,xi 〉)+ + λ‖w ‖22 , (5)

where (a)+ is shorthand for max(0,a), and λ is a parameter that helps to select for “simple” (short)
solutions. The larger λ is, the more we penalize long solutions.

The individual loss here is called the hinge loss. The idea is that w de�nes a classi�er given by
sign(〈w,xi 〉). The loss function here, called the hinge loss, applies no penalty at all when the sign
of 〈w,xi 〉 is correct (that is, equal to yi ) and the absolute value of 〈w,xi 〉 is at least 1. Otherwise
it applies a penalty that changes gradually with 〈w,xi 〉. This loss is intended to be a continuous,
convex alternative to the misclassi�cation losss, which would simply be 1 if yi 〈w,xi 〉 < 0 and 0
otherwise.

Neural nets provide another rich class of decomposable losses. The entries of w represent
weights in the network, and one of several loss functions is used to penalize weights that lead to
predictions that do not �t the data well.

The examples we’ve given are for continuous loss functions (i.e. where ` is continuous in w),
and these will continue to be our focus. The general framework makes sense for discrete problems,
but the tools one employs and the �avor of the algorithms are di�erent.

Losses and Likelihoods Many loss functions used in practice are derived from some probabilistic
model of data generation. Speci�cally, we often think of the parametersw as de�ning a distribution
on the whole data (so p(x |w) is a valid distribution on x for eachw) or on the label (so that p(y |x ,w)
is a valid distribution on y for every �xed w and x .

Given a data set that an analyst conjectures has been generated according to a given model,
a natural approach is to �nd the parameter w that would have had the highest probability of
generating x = (x1, ...,xn), assuming the data were generated i.i.d.. We can write that probability
as a product

∏n
i=1 p(xi |w). Taking logarithms, we can turn the maximization problem into a sum,

which makes calculations easier:

w ∈ argmax
n∏
i=1

p(xi |w) ⇐⇒ w ∈ argminL(w ; x) =
n∑
i=1
`(w ;xi ) where `(w ;x) = log 1

p(x |w)
.

This value of w is called the maximum likelihood estimator for the probability model. For
example, if we think that the data were drawn from a Gaussian distribution with variance 1 and
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unknown mean µ, the mean of the data set is the maximum likelihood estimator for µ. The median
corresponds to maximum likelihood estimation for the Laplace distribution (with known variance
and unknown mean).

2 Private ERM

Given a loss function ` specifying a decomposable loss L and a feasible set C, we can ask for a
di�erentially private algorithm that solves the ERM problem. Without the privacy constraint, we
could hope for a solution with zero excess empirical risk. The randomness inherent to di�erential
privacy makes that impossible in general, but we could potentially bound the excess risk, either in
expectation or with high probability. For simplicity, we’ll focus on excess empirical risk.

In order to solve the problem di�erentially privately, we’ll need to somehow bound the in�uence
of any one data point on the loss function L. We’ll consider two assumptions on the individual loss
function ` : C ×U → R:

• Bounded loss: We say the loss ` is ∆-bounded if for every data value x ∈ U and for every
w ∈ C,

`(w ;x) ∈ [0,∆] .

This is essentially the same as asking that the overall loss function L(w ; ·) have global sensitiv-
ity at most ∆ for every �xed w . For example, in classi�cation problems, the misclassi�cation
loss is always bounded.

• Lipschitz loss: The individual loss ` is G-Lipschitz if for every data value x ∈ U and for every
w ∈ C, the gradient of ` with respect to w is bounded by G:

‖∇`(w ;x)‖2 ≤ G .

In fact, the loss doesn’t need to be di�erentiable to be Lipschitz—the more general de�nition
is that for every x and every two vectorsv,w , we have |`(v ;x) − `(w ;x)| ≤ G‖v −w ‖. This is
implied by an upper bound on the gradient (why?) but allows for a wider range of functions.
For example, the loss function de�ning the median `(w ;x) = |w −x | is 1-Lipschitz. The hinge
loss (5) is G-Lipschitz as along as we restrict the length of the data vectors x to be at most G ,
since by the chain rule2

∇`(w ;x) =
(
d

dt
(1 − t)+

��
t=〈w,x 〉

)
· x . (6)

The �rst term is -1 or 0, so the gradient’s norm is at most ‖x ‖2.

Exercise 2.1. Show that if the feasible set C is bounded, then Lipschitz loss functions are bounded.
Speci�cally, if ` is G-Lipschitz and the diameter of C is R, then ` is ∆-bounded for ∆ = G · R.

Exercise 2.2. Under what conditions on C andU is the linear regression loss bounded? Lipshitz?

Exercise 2.3. Show that if the individual loss ` is G-Lipschitz, then so is the overall loss L.
2Recall the chain rule from calculus: if f ,д : R→ R are di�erentiable, then d

dw f (д(w)) =
(
d
dt f (t)

��
t=д(w )

)
· d
dw д(w).
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Appendix

A Convex Sets and Functions

We recall some basic de�nitions and facts about convex functions.

De�nition A.1. A set C in Rd is convex if every two points x ,y ∈ C can “see each other”, that is,
if the line segment from x to y is entirely within C.

For example, cubes, pyramids, and spheres are convex, but “donuts” (tori) and chevrons are not.

De�nition A.2. A function f : C → R de�ned on a convex set C ⊆ R is convex if for every two
points x ,y ∈ C, we have

f
(x + y

2

)
≤

f (x) + f (y)

2 .

For example, f (x) = x2 and f (x) = |x | and f (x) = ln(1/x) (where it is de�ned) are convex, but
f (x) = (x − 1)3 is not (why?).

This de�nition is clean and simple, but not actually that easy to work with. An equivalent, and
much more useful, de�nition of convexity is the following:

Lemma A.3. Given a convex set C, a function f : C → R is convex if and only if: for every point
x ∈ C, we can �nd an a�ne function дx such that f (x) = дx (x) and f (y) ≥ дx (y) for all y ∈ C.

When f is di�erentiable at x , the function дx is just the �rst-order Taylor approximation

дx (y) = f (x) + 〈∇f (x),y − x〉 .

However, the lemma makes sense even when f is not di�erentiable at x . In that case, we get many
possible functions дx that are valid lower bounds for f . For instance, at x = 0, the absolute value
function f (x) = |x | can be bounded below by дx (y) = cy for any constant c between -1 and 1. In
general, the set of a�ne functions that are valid lower bounds for f at x de�ne the subgradient set
of f at x

∂ f (x)
def
= {w : (∀y ∈ C)f (x) + 〈w,y − x〉 ≤ f (y)} . (7)

Exercise A.4. Use Lemma A.3 to prove Jensen’s inequality: if f is a convex function de�ned on a
convex set C, then for every random variable X taking values in C,

E (f (X )) ≥ f (E (X )) .
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