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1 Approximate Di�erential Privacy

One of the notable features of di�erential privacy is the multiplicative notion of similarity between
distributions, that is, we require

P (A(x) ∈ E) ≤ eε · P (A(x′) ∈ E) (1)

for every event E. Intuitively this requirement seems overly stringent. For example, suppose there is an
event E such that P (A(x) ∈ E) = 0. Then, for any �nite ε , di�erential privacy says that P (A(x′) ∈ E) = 0
for every neighboring dataset. Is this really necessary? Yes, if P (A(x′) ∈ E) = 10−80, and we see an
outcome in E, then we know with certainty that the input was x′ and not x. But that doesn’t seem like a
big problem given that E only occurs with probability one-over-the-number-of-atoms-in-the-universe.

In this lecture, we’ll explore a slightly more permissive variant of di�erential privacy that captures
the intuition that these sorts of highly disclosive, but extremely low probability events should be allowed.
Of course, there’s no reason to consider more permissive variants unless we get something in return, so,
not surprisingly, we’ll see how we can use this relaxation to get better utility.

1.1 De�nition and Properties

Speci�cally, we will modify the de�nition of di�erential privacy to allow for a hybrid additive-multiplicative
de�nition of closeness.

De�nition 1.1 ((ε,δ )-DP with �xed-size data sets). A randomized algorithm A : Xn → Y is (ε,δ )-
di�erentially private for size n data sets if, for every pair of neighboring data sets x, x′, for all E ⊆ Y,

P (A(x) ∈ E) ≤ eε · P (A(x′) ∈ E) + δ (2)

Note that (ε, 0)-di�erential privacy is equivalent to the standard de�nition of ε-di�erential privacy, but
we will typically write (ε, 0)-DP to avoid confusion. We often call (ε,δ )-DP approximate DP, and (ε, 0)-DP
pure DP.1

Intuitively, we think of δ as the probability of a “total privacy failure,” so we want δ to be extremely
small, like 2−20 or ideally more like 2−128. When δ is small enough, this de�nition has very similar
“semantics” to the standard de�nition of di�erential privacy, although with some technical subtleties
that we won’t focus on for now. The relaxed de�nition also satis�es many of the same useful properties
that are true for (ε, 0)-di�erential privacy, with a suitable change of parameters to account for δ .

Lemma 1.2. Approximate di�erential privacy satis�es the following properites:

1. Closure under Post-processing: for any A : Xn → Y that is (ε,δ )-DP, and any post-processing map
B : Y → Y ′, B(A(·)) is also (ε,δ )-DP.

1Jon doesn’t like these names, since they suggest there is something substandard about (ε,δ )-DP, but they are convenient.
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2. (ε,δ )-di�erential privacy satis�es (adaptive) composition. Running one mechanism satisfying (ε1,δ1)-
DP followed by another mechanism satisfying (ε2,δ2)-DP satis�es (ε1 + ε2,δ1 + δ2)-DP.

Exercise 1.3. Prove Lemma 1.2.

Note that, similar to pure DP, approximate DP satis�es a composition property where compositingT
mechanisms, each with (ε,δ )-DP gives us a combined mechanism that is (εT ,δT )-DP. However, unlike
pure DP, this composition bound can actually be improved considerably, and we can prove a bound more
like (ε

√
T ,δT )-DP, although the exact parameters are a bit weaker. This “strong composition” property

is one of the most useful things about the approximate version of DP, and the next lecture is devoted to
exploring this phenomenon in more detail.

1.1.1 Proving Mechanism’s Satisfy Approximate DP

Approximate DP di�ers from pure DP in some critical ways though. For example, in proving pure DP,
we focued on events E that were just singletons, E = {y}, and relied on the equivalence,

∀y ∈ Y P (A(x) = y) ≤ eε · P (A(x′) = y) (3)
⇐⇒ ∀E ⊆ Y P (A(x) ∈ E) ≤ eε · P (A(x′) ∈ E) (4)

For approximate DP the analogous statement is not true, and we have to consider all sets E ⊆ Y to
establish approximate DP.

However, to prove approximate-DP, it is enough to prove that if we drawy fromA(x), then with high
probability we will have P (A(x) = y) ≤ eε · P (A(x′) = y). We can capture this idea with the following
useful lemma, that we will often use when we want to prove that a mechanism is (ε,δ )-DP.

Lemma 1.4. For a mechanism A : Xn → Y, a pair of datasets x, x′ ∈ Xn , and any ε > 0, de�ne the sets

Goodx,x′ =
{
y ∈ Y : P

(A(x) = y)
P (A(x′) = y)

≤ eε
}

Badx,x′ = Goodx,x′ (5)

If P
(
A(x) ∈ Badx,x′

)
≤ δ for every pair of neighboring datasets x, x′ ∈ Xn , then A satis�es (ε,δ )-DP.

Proof. To prove the statement, �x an arbitrary pair of neighboring datasets x, x′ ∈ Xn and an arbitrary
event E ⊆ Y. Then we can calculate:

P (A(x) ∈ E) = P
(
A(x) ∈ E ∩ Goodx,x′

)
+ P

(
A(x) ∈ E ∩ Badx,x′

)
(6)

≤ P
(
A(x) ∈ E ∩ Goodx,x′

)
+ P

(
A(x) ∈ Badx,x′

)
(7)

≤ P
(
A(x) ∈ E ∩ Goodx,x′

)
+ δ (8)

=
∑

y∈E∩Goodx,x′
P (A(x) = y) + δ (9)

≤
∑

y∈E∩Goodx,x′
eε · P (A(x′) = y) + δ (10)

= eε · P
(
A(x′) ∈ E ∩ Goodx,x′

)
+ δ (11)

≤ eε · P (A(x′) ∈ E) + δ (12)

which is what we needed to show. �

One interesting thing to note is that (ε,δ )-DP does not imply that P (A(x) ∈ Bad) ≤ δ , as you might
expect, although a version of this equivalence does hold but with slightly weaker parameters.
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1.2 A First Example: Truncated Laplace

We wouldn’t bother considering this de�nition if it didn’t allow us to do something useful. In the next
section we’ll see a much more general feature of approximate DP, but let’s start with a very simple
example called the truncated Laplace mechanism.

Our canonical example of an (ε, 0)-di�erentially private mechanism for answring some real-valued
statistic f : Xn → R was to compute

A(x) = f (x) +
∆

ε
· Lap(1) (13)

where ∆ is the global sensitivity of f . The noise distribution has standard devitation O(∆/ε), but has the
undesirable property that the noise can be arbitrarily large. That is, there is some probability that we
receive an answer that is complete nonsense. Although we haven’t seen the tools to prove it yet, this
issue is inherent for pure di�erentially private algorithms, as any (ε, 0)-DP algorithm for answering a
single count has to have some small probability of giving an extremely bad answer.

However, (ε,δ )-DP can actually be achieved while adding noise from a distribution of bounded
support. Speci�cally, for λ,τ > 0, the truncated Laplace distribution Lap(λ,τ ) is de�ned by the probability
density function

p(y) =

{
1
Z · e

−|y |/λ |y | ≤ τ

0 |y | > τ
(14)

whereZ =
∫ τ
−τ e

−|y |/λdy is a normalizing constant. One can prove that, for some choice of τ = O(log(1/δ ),
the mechanism

A(x) = f (x) +
∆

ε
· Lap(1,τ ) (15)

satis�es (ε,δ )-di�erential privacy. This mechanism has the essentially the same standard deviation, but
also has a guaranteed worst-case bound on the magnitude of the noise! Intuitively, we’re trading a small
probability of getting an extremely inaccurate answer for a small probability of getting an answer that
compromises privacy.

Exercise 1.5. Prove that the truncated Laplace mechanism in (15) is (ε,δ )-di�erentially private.

2 The Gaussian Mechanism

In this section we’ll see that adding noise from a Gaussian distribution, rather than a Laplace distribution,
satis�es approximate DP, and will in fact can give sometimes much better accuracy for functions that
output high-dimensional vectors.

2.1 Univariate Gaussian Noise

Recall that the Gaussian distribution with mean µ and standard deviation σ , denotedN(µ,σ 2), is de�ned
by the probability density function

pµ,σ 2(y) =
1
√
2πσ

e−
(x−µ )2
2σ 2 (16)

We’ll start by showing that adding Gaussian noise with mean 0 and variance O(∆2 log(1/δ )/ε2)
satis�es (ε,δ )-di�erential privacy. Notice that this standard deviation is actually larger than the variance
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for the Laplace mechanism by a factor of O(log(1/δ )), but analyzing the univariate case will be an
important warmup for analyzing the case of functions that output high-dimensional vectors.

For a function f : Xn → R, we’ll de�ne the Gaussian mechanism as

A(x) = f (x) +N
(
0, 2∆

2 log(2/δ )
ε2

)
(17)

and we will prove that this mechanism satis�es approximate di�erential privacy.

Theorem 2.1. For any ε ≤ 1 and δin(0, 1), the Gaussian mechanism (17) satis�es (ε,δ )-di�erential
privacy.2

Proof. To start, let’s �x two neighboring datasets x, x′. Without loss of generality, we will assume f (x) =
0, which implies | f (x′)| ≤ ∆. Recall that to use Lemma 1.4 we want to show that P

(
A(x) ∈ Badx,x′

)
≤ δ ,

so to this end let’s study the following probability ratio. To clean up the calculations, we will look at
the log of the probability ratio, and we’ll write σ 2 = 2∆2 log(2/δ )/ε2 to be the variance of the Gaussian
noise. Then we have

ln
(
P (A(x) = y)
P (A(x′) = y)

)
= ln ©­«

exp(− y2

2σ 2 )

exp(− (y−f (x
′))2

2σ 2 )

ª®¬ = (y − f (x′))2

2σ 2 −
y2

2σ 2 (18)

=
(y − f (x′))2 − y2

2σ 2 (19)

=
−2f (x′)y + f (x′)2

2σ 2 (20)

=
−2f (x′)y + f (x′)2

4∆2 log(2/δ )/ε2 (21)

≤
−yε2

2∆ log(2/δ ) +
ε

4 (22)

where the last two lines use the fact that | f (x′)| ≤ ∆, ε ≤ 1, and log(2/δ ) ≥ 1 and does some
simpli�cation.

Notice that the ratio depends on y itself, and is largest when y is negative with large magnitude.
Since y is random and drawn from N(0,σ 2), it shouldn’t take extreme negative values too often. In
particular, we have

Badx,x′ ⊆
{
y : |y | >

√
2∆ log(2/δ )

ε

}
(23)

Using bounds on the tails of Gaussians, namely that P
(
|N(0,σ 2)| > tσ

)
≤ 2e−t 2/2, we have

P
(
A(x) ∈ Badx,x′

)
≤ P

(
A(x) ∈

{
y : |y | >

√
2∆ log(2/δ )

ε

})
≤ δ (24)

Thus we have the conditions to apply Lemma 1.4 to conclude that the Gaussian mechanism satis�es
(ε,δ )-DP. �

2Note that, unlike the Laplace mechanism, which works for any value of ε > 0, for our analysis of the Gaussian mechanism
we need ε to be smewhat small, although we could still prove that the Gaussian mechanism is private, with slightly di�erent
types of bounds, when ε is larger.
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2.2 Multivariate Gaussian Noise and `2-Sensitivity

So far we’ve seen two di�erent mechanisms that satisfy approximate DP but not pure DP, but no killer
application where (ε,δ )-DP allows us to obtain asymptotically lower error for ay problem. In this section
we’ll show that the multivariate version of the Gaussian mechanism can do just that for when we want
to approximate some function f : Xn → Rk where f has low global sensitivity in the Euclidean norm
(`2-norm) rather than in the `1-norm.

2.2.1 `2-Sensitivity

De�nition 2.2 (Global `2 Sensitivity). For a function f : Xn → Rk , we de�ne the global `2-sensitivity
to be

∆2 = max
neighboring x,x′

‖ f (x) − f (x′)‖2 (25)

where ‖v |2 = (
∑

i v
2
i )

1/2 is the Euclidean norm. Note that we will sometimes denote the `1-sensitivity
as ∆1 to distinguish it from ∆2.

One important thing to remember is that the `2-norm is never more than the `1 norm. In fact, we
have ∆2 ≤ ∆1 ≤

√
k∆2, which indicates that the `2-sensitivity is never more than the `1-sensitivity but

can actually be much lower when k is large. For example, suppose X = {0, 1}k and the statistic f just
computes the sum of the datapoints f (x) =

∑n
i=1 xi . Then we have ∆1 = k and ∆2 =

√
k .

Another useful example to keep in mind comes from the query release problem. If we have a set of
k statistics f1, . . . , fk where each has the form

fj (x) =
n∑
i=1

φ(xi ) for some φ : X → {0, 1} (26)

and we write
f (x) = (f1(x), . . . , fk (x)) (27)

then f has ∆1 = k and ∆2 =
√
k .

As we’ll see the useful thing about the Gaussian mechanism as opposed to the Laplace mechanism
is that the magnitude of the noise can be proportional to ∆2 instead of ∆1.

2.2.2 The Multivariate Gaussian Mechanism

The spherical multivariate Gaussian distribution inRk with mean ®µ and varianceσ 2 is denotedN(®µ,σ 2Ik×k )
is de�ned by the density function

p ®µ,σ 2(y) = 1
(2πσ 2)k/2

e−
‖y− ®µ ‖22
2σ 2 (28)

In more operational terms, it is the random variable Z = (Z1, . . . ,Zk ) where each Z j is sampled
independently from the univariate Gaussian distribution N(µ j ,σ 2). A few basic facts about this random
variable will be useful to know:

Lemma 2.3. If Z is drawn from the spherical multivariate Gaussian distribution N(®0,σ 2Ik×k ), then

1. E
(
‖Z ‖22

)
= σ 2k

2. E (‖Z ‖2) ≤ σ
√
k
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3. E (max{|Z1 |, . . . , |Zk |}) ≤ σ ·O(
√
lnk)

4. For any vector v ∈ Rk the dot product Z · v is distributed as N(0,σ 2‖v ‖22).

Now we’re ready to de�ne the Gaussian mechanism. Given a function f : Xn → Rk with `2-
sensitivity ∆2, we can de�ne the Gaussian mechanism as

A(x) = f (x) +N
(
®0,
2∆2

2 log(2/δ )
ε2

· Ik×k

)
(29)

Unsurprisingly, we will prove that this mechanism satis�es (ε,δ )-di�erential privacy

Theorem 2.4. For any ε ≤ 1 and δ ∈ (0, 1), the Gaussian mechanism (29) satis�es (ε,δ )-di�erential
privacy.

Proof. The proof follows the exact same approach as the univariate Gaussian mechanism, but we have
to calculate the probability ratio for the multivariate Gaussian. As before, �x two neighboring datasets
x, x′ and assume without loss of generality that f (x) = ®0 so that ‖ f (x′)‖2 ≤ ∆2. We will study the
log-probability-ratio again

ln
(
P (A(x) = ®y)
P (A(x′) = ®y)

)
= ln ©­«

exp(− ‖ ®y ‖
2
2

2σ 2 )

exp(− ‖ ®y−f (x
′) ‖22

2σ 2 )

ª®¬ =
‖ ®y − f (x′)‖22 − ‖®y‖

2
2

2σ 2 (30)

To analyze this expression precisely, we want to use the fact that for any pair of vectors u,v ∈ Rk ,
‖u −v ‖22 = ‖u‖

2
2 + ‖v ‖

2
2 − 2u · v . Thus we have

‖ ®y − f (x′)‖22 − ‖®y‖
2
2

2σ 2 =
−2f (x′) · ®y + ‖ f (x′)‖22

2σ 2 (31)

=
−2f (x′) · ®y + ‖ f (x′)‖22

4∆2
2 log(2/δ )/ε2

(32)

≤
−(f (x′) · ®y) · ε2

2∆2
2 log(2/δ )

+
ε

4 (33)

As with the univariate case, we have

Badx,x′ ⊆
{
®y : | f (x′) · ®y | >

√
2∆2

2 log(2/δ )
ε

}
(34)

Now, since f (x′) · ®y is distributed as the univariate Gaussian N(0, ‖ f (x′)‖22σ 2) where ‖ f (x′)‖22 ≤ ∆2
2,

and σ 2 = 2∆2
2 log(2/δ )/ε2, we have

P
(
A(x) ∈ Badx,x′

)
≤ P

(
A(x) ∈

{
®y : | f (x′) · ®y | >

√
2∆2

2 log(2/δ )
ε

})
≤ δ (35)

�
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2.2.3 Discussion

As promised, the Gaussian mechanism allows us to get better variance for the linear query release
problem when the number of queries is relatively large. Speci�cally, if we want to solve query release
with k queries, then the Laplace mechanism requires us to add noise to each query proportional to the
`1-sensitivity ∆1 ≤ k , which gives an expected maximum error of

E

(
kmax
j=1
| fj (x) − aj |

)
≤ O

(
k logk
ε

)
(36)

Although we haven’t seen the tools to prove it yet, one can actually show that any (ε, 0)-DP algorithm
for answering k arbitrary queries of this form must have expected maximum error Ω(k/ε), so we cannot
improve the Laplace mechanism too much without relaxing the de�nition of privacy. However, since
∆2 ≤

√
k , if we are willing to accept a small δ > 0, the Gaussian mechanism will guarantee

E

(
kmax
j=1
| fj (x) − aj |

)
≤ O

(√
k logk log(1/δ )

ε

)
(37)

Thus, if k is large enough so that k logk ≥ log(1/δ ) then we get strictly less error by relaxing the
de�nition to approximate DP and using the Gaussian mechanism. One thing we will see in the next
lecture or two is that this improvement is really a consequence of relaxing the de�nition of DP, and
not of using Gaussian noise per se, and we can actually add Laplace noise of similar magnitude if we’re
willing to settle for approximate DP. However, Gaussian noise is nice for lots of reasons

Additional Reading and Watching

• Our analysis of the Gaussian mechanism isn’t quite tight, both because we wanted to avoid some
nasty calculations involving Gaussian density functions, and because we lose something by going
through Lemma 1.4 rather than analyzing (ε,δ )-DP directly. A tighter analysis of the Gaussian
mechanism for (ε,δ )-DP was done by Balle and Wang [BW18].

• There are also alternative variants of di�erential privacy that, in some sense, are tailored to the
precise privacy properties of the Gaussian mechanism. These variants are called concentrated
DP [DR16, BS16] and Gaussian DP [DRS19].

Acknowledgement This lecture note is built on the course material developed by Adam Smith and
Jonathan Ullman.
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